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How the Brain Works

� Neuron (nerve cell)

– the fundamental functional unit of all nervous system 

tissue, including the brain.

– There 1011 neurons in the human brain

Neuron components
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� Neuron components

– Soma (cell body): 

� provides the support functions and structure of the cell, that contains 

a cell nucleus.

– Dendrites: 

� consist of more branching fibers which receive signal from other 
nerve cells



How the Brain Works

� Neuron components (cont.)

– Axon: 

� a branching fiber which carries signals away from the neuron that 
connect to the dendrites and cell bodies of other neurons. 

� In reality, the length of the axon should be about 100 times the 
diameter of the cell body.

– Synapse: 
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– Synapse: 

� The connecting junction between axon and dendrites. 



How the Brain Works

� The parts of a nerve cell or neuron. 
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Neuron Firing Process

� Neuron Firing Process

1. Synapse receives incoming signals, change electrical 

potential of cell body

2. When a potential of cell body reaches some limit, neuron 

“fires”, electrical signal (action potential) sent down axon

3. Axon propagates signal to other neurons, downstream
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3. Axon propagates signal to other neurons, downstream



How the Brain Works

� How synapse works:

– Excitatory synapse: increasing potential

– Synaptic connection: plasticity

– Inhibitory synapse: decreasing potential

� Migration of neurons

– Neurons also form new connections with other neurons
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– Neurons also form new connections with other neurons

– Sometimes entire collections of neurons can migrate from 

one place to another. 

– These mechanisms are thought to form the basis for 

learning in the brain.

� A collection of simple cells can lead to thoughts, 

action, and consciousness.



Comparing brains with digital computers

� Advantages of a human brain vs. a computer

– Parallelism: all the neurons and synapses are active 

simultaneously, whereas most current computers have only 

one or at most a few CPUs.

– More fault-tolerant: A hardware error that flips a single 

bit can doom an entire computation, but brain cells die all 
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bit can doom an entire computation, but brain cells die all 

the time with no ill effect to the overall functioning of the 

brain.

– Inductive algorithm: To be trained using an inductive 

learning algorithm



Artificial Neural Networks
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Artificial Neural Networks

� Artificial Neural Networks (ANN) Started by 

psychologists and neurobiologists to develop and test 

computational analogues of neurons

� Other names: 

– connectionist learning, 

Prediction by Neural Networks

– parallel distributed processing, 

– neural computation, 

– adaptive networks,  and 

– collective computation



Artificial Neural Networks

� Artificial neural networks components:

– Units

� A neural network is composed of a number of nodes, or units

� Metaphor for nerve cell body

– Links

� Units connected by links. 

Prediction by Neural Networks

� Units connected by links. 

� Links represent synaptic connections from one unit to another

– Weight

� Each link has a numeric weight



Artificial Neural Networks

� An example of ANN
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Artificial Neural Networks

� Long-term memory

– Weights are the primary means of long-term storage in 

neural networks

� Learning method

– Learning usually takes place by adjusting the weights.
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� Input and Output Units

– Some of the units are connected to the external 

environment, and can be designated as input units or 

output units



Artificial Neural Networks

� Components of a Unit

– a set of input links from other units, 

– a set of output links to other units, 

– a current activation level, and 

– a means of computing the activation level at the next step in 

time, given its inputs and weights.
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time, given its inputs and weights.

� The idea is that each unit does a local computation 

based on inputs from its neighbors, but without the 

need for any global control over the set of units as a 

whole.



Artificial Neural Networks

� Real (Biological) Neural Network vs. Artificial Neural 

Network

Artificial Neural NetworkReal Neural Network 

Neuron / Node / UnitSoma / Cell body
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Input linksDendrite

Output linksAxon

WeightSynapse



Artificial Neural Networks

� Neural networks can be used for both 

– supervised learning, and

– unsupervised learning 

� For supervised learning neural networks can be used 

for both 
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– classification (to predict the class label of a given example) 

and 

– prediction (to predict a continuous-valued output).

� In this chapter we want to discuss about application of 

neural networks for supervised learning



Artificial Neural Networks

� To build a neural network must decide:

– how many units are to be used

– what kind of units are appropriate

– how the units are to be connected to form a network. 

� Then 
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– initializes the weights of the network, and 

– trains the weights using a learning algorithm applied to a 

set of training examples for the task. 

� The use of examples also implies that one must decide 

how to encode the examples in terms of inputs and 

outputs of the network.



Simple Computing Elements
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Simple computing elements

� Each unit performs a simple process: 

– Receives n-inputs

– Multiplies each input by its weight

– Applies activation function to the sum of results

– Outputs result
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Simple computing elements

� Two computational components

– Linear component: 

� input function, that init, that computes the weighted sum of the unit's 

input values.

– Nonlinear component: 

� activation function, g, that transforms the weighted sum into the 
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� activation function, g, that transforms the weighted sum into the 

final value that serves as the unit's activation value , ai

� Usually, all units in a network use the same activation function.



Simple computing elements

� A typical unit
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Simple computing elements

� Total weighted input

– the weights on links from node j into node i are denoted by 

Wj, i

j

j

iji aWin ∑= ,
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j, i

– The input values is called aj



Example: Total weighted input

Input: (3, 1, 0, -2)

Processing:

3(0.3) + 1(-0.1) + 0(2.1) + -1.1(-2)

= 0.9 + (-0.1) + 2.2
1
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= 3
1

2

3

4

0.3

-0.1

2.1

-1.1



Simple computing elements

� The activation function g

� Three common mathematical functions for g are 

)()( , j

j

ijii aWginga ∑==
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� Three common mathematical functions for g are 

– Step function

– Sign function

– Sigmoid function



Simple computing elements

� Three common mathematical functions for g
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Step Function

� The step function has a threshold t such that it outputs 

a 1 when the input is greater than its threshold, and 

outputs a 0 otherwise.

� The biological motivation is that a 1 represents the 

firing of a pulse down the axon, and a 0 represents no 

firing. 
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firing. 

� The threshold represents the minimum total weighted 

input necessary to cause the neuron to fire. 



Step Function Example

� Let t = 4 1

2

3

0.3

-0.1

2.1
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Step Function

� It mathematically convenient to replace the threshold 

with an extra input weight. 

� Because it need only worry about adjusting weights, 

rather than adjusting both weights and thresholds.

� Thus, instead of having a threshold t for each unit, we 
a
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add an extra input whose activation

∑∑
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Where W0, i = t  and a0= -1   � fixed

0a



Step Function

� The Figure shows how the Boolean functions AND, OR, 

and NOT can be represented by units with a step function 

and suitable weights and thresholds. 

� This is important because it means we can use these units 

to build a network to compute any Boolean function of the 

inputs.
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inputs.

  



Sigmoid Function

� A sigmoid function often used to approximate the step 

function
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: the steepness parameter

e+1

σ



Sigmoid Function

� Input: (3, 1, 0, -2),          =1
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Sigmoid Function
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Another Example

� A two weight layer, feedforward network

� Two inputs, one output, one ‘hidden’ unit

� Input: (3, 1)

x
e
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1
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0.5
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� What is the output?

0.5

-0.5

0.75



Computing in Multilayer Networks

� Computing:

– Start at leftmost layer

– Compute activations based on inputs

– Then work from left to right, using computed activations as 

inputs to next layer

Example solution xf =
1

)(
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� Example solution

– Activation of hidden unit

� f(0.5(3) + -0.5(1)) = f(1.5 – 0.5) = f(1) =  0.731

– Output activation

� f(0.731(0.75)) = f(0.548) = 0.634

x
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Feed-Forward Networks
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Feed-forward Networks

� Feed-forward networks

– Unidirectional links

– Directed acyclic (no cycles) graph (DAG)

– No links between units in the same layer

– No links backward to a previous layer
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– No links that skip a layer.

– Uniformly processing from input units to output units



Feed-forward Networks

� An example: A two-layer, feed-forward network 

with two inputs, two hidden nodes, and one output 

node.
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Feed-forward Networks

� Units

– Input units: the activation value of each of these units is 

determined by the environment.

– Output units: at the right-hand end of the network units

– Hidden units: they have no direct connection to the outside 

world.
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world.

� Because the input units (square nodes) simply serve to 

pass activation to the next layer, they are not counted



Feed-forward Networks

� Types of feed-forward networks:

– Perceptrons

� No hidden units

� This makes the learning problem much simpler, but it means that 

perceptrons are very limited in what they can represent.

– Multilayer networks

Prediction by Neural Networks

– Multilayer networks

� one or more hidden units



Feed-forward Networks

� Feed-forward networks have a fixed structure and fixed 

activation functions g

� The functions have a specific parameterized structure

� The weights chosen for the network determine which of 

these functions is actually represented.

For example, the network calculates the following 
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� For example, the network calculates the following 

function:

– where g is the activation function, ai and , is the output of node i. 



What neural networks do

� Because the activation functions g are nonlinear, the 

whole network represents a complex nonlinear 

function.

� If you think of the weights as parameters or 

coefficients of this function, then learning just 

becomes:
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becomes:

– a process of tuning the parameters to fit the data in the 

training set—a process that statisticians call nonlinear 

regression.



Optimal Network Structure

� Too small network 

– incapable of representation

� Too big network

– not generalized well

– Overfitting when there are too many parameters.
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Perceptrons
(Single-layer, Feed-forward Neural Networks)
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(Single-layer, Feed-forward Neural Networks)



Perceptrons

� Perceptrons

– Single-layer feed-forward network

– were first studied in the late 1950s

� Types of Perceptrons:
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– Single-output Perceptron

� perceptrons with a single output unit

– Multi-output perceptron

� perceptrons with several output units



Perceptrons

� Each output unit is 

independent of 

the others 

� Each weight only 

affects one of 

the outputs.
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Perceptrons

� Activation of output unit:

– Wj : The weight from input unit j

).(00 IWStepIWStepO
j

jj =









= ∑
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– Wj : The weight from input unit j

– Ij : The activation of input unit j

– we have assumed an additional weight W0 to provide a 

threshold for the step function, with I0 = -1 .



Perceptrons

� Perceptrons are severely limited in the Boolean functions 

they can represent. 

� The problem is that any input Ij can only influence the final 

output in one direction, no matter what the other input 

values are.

� Consider some input vector a. 
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� Consider some input vector a. 

– Suppose that this vector has aj = 0 and that the vector 

produces a 0 as output. Furthermore, suppose that when aj

is replaced with 1, the output changes to 1. This implies that 

Wj must be positive. 

– It also implies that there can be no input vector b for which 

the output is 1 when bj = 0, but the output is 0 when bj is 

replaced with 1.



Perceptrons

� The Figure shows three different Boolean functions of two 

inputs, the AND, OR, and XOR functions.
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� Black dots indicate a point in the input space where the 

value of the function is 1, and white dots indicate a point 

where the value is 0.

(Il # I2)



Perceptrons

� As we will explain, a perceptron can represent a 

function only if there is some line that separates all the 

white dots from the black dots. 

� Such functions are called linearly separable. 

� Thus, a perceptron can represent AND and OR, but 
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not XOR (if Il # I2).



Perceptrons

� The fact that a perceptron can only represent linearly 

separable functions follows directly from Equation:

� A perceptron outputs a 1 only if W . I > 0. 

).(00 IWStepIWStepO
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� A perceptron outputs a 1 only if W . I > 0. 

– This means that the entire input space is divided in two 

along a boundary defined by W . I = 0, 

– that is, a plane in the input space with coefficients given by 

the weights.



Perceptrons

� It is easiest to understand for the case where n = 2. In 

Figure (a), one possible separating "plane" is the 

dotted line defined by the equation

� The region above the line, where the output is 1 , is 
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therefore given by



Perceptron Learning Method

Prediction by Neural Networks



Perceptron Learning Method

� The initial network has randomly assigned weights, 

usually from the range [-0.5,0.5].

� The network is then updated to try to make it 

consistent with the training examples (instances).

� This is done by making small adjustments in the 
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weights to reduce the difference between the observed 

and predicted values.

� The algorithm is the need to repeat the update phase 

several times for each example in order to achieve 

convergence.



Perceptron Learning Method

� Epochs

– The updating process is divided into epochs. 

– Each epoch involves updating all the weights for all the 

examples.
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Perceptron Learning Method

� The generic neural network learning method
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an epoch

Err = T-O



Perceptron Learning Method

� The weight update rule

– If the predicted output for the single output unit is O, and 

the correct output should be T, then the error is given by

Err = T – O

– If the Err is positive, we need to increase O
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– If the Err is negative, we need to decrease O

– Each input unit contributes Wj Ij to the total input, so 

– If Ij is positive, an increase in Wj will tend to increase O

– If  Ij is negative, an increase in Wj will tend to decrease O. 



Perceptron Learning Method

� We can achieve the effect we want with the following 

rule:

– α : is the learning rate

ErrIWW jjj **α+←
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� This rule is a variant of the perceptron learning rule

proposed by Frank Rosenblatt. 

– Rosenblatt proved that a learning system using the 

perceptron learning rule will converge to a set of weights 

that correctly represents the examples, as long as the 

examples represent a linearly separable function.



Delta Rule for a Single Output Unit

jj IOTW )( −=∆ α

jW∆

α

Change in j th weight of weight vector

Learning rate
n inputs 1 output
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α
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Example

� W = (W1, W2, W3)

– Initially: W= (.5  .2  .4)

� Let α = 0.5

� Apply delta rule

Sample Input Output

W1

W2

W3
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Sample Input Output

1 0 0 0 0

2 1 1 1 1

3 1 0 0 1

4 0 0 1 1



One Epoch of Training

Step Input Desired 

output 

(T)

Actual 

output 

(O)

Starting 

Weights

Weight updates

1 (0 0 0) 0 0 (.5 .2 .4)
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Delta rule:

1 (0 0 0) 0 0 (.5 .2 .4)

2 (1 1 1) 1

3 (1 0 0) 1

4 (0 0 1) 1

jj IOTW )( −=∆ α



One Epoch of Training

Step Input Desired 

output 

(T)

Actual 

output 

(O)

Starting 

Weights

Weight updates

1 (0 0 0) 0 0 (.5 .2 .4) W1: 0.1(0 – 0)0
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1 (0 0 0) 0 0 (.5 .2 .4) W1: 0.1(0 – 0)0

W2: 0.1(0 – 0)0

W3: 0.1(0 – 0)0

Delta rule:
jj IOTW )( −=∆ α

delta-rule1.xls



One Epoch of Training

Step Input Desired 

output 

(T)

Actual 

output 

(O)

Starting 

Weights

Weight updates

1 (0 0 0) 0 0 (.5 .2 .4) (0 0 0)
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1 (0 0 0) 0 0 (.5 .2 .4) (0 0 0)

2 (1 1 1) 1 (.5 .2 .4)

3 (1 0 0) 1

4 (0 0 1) 1



Remaining Steps in First Epoch of Training

Step Input Desired 

output 

(T)

Actual 

output 

(O)

Starting 

Weights

Weight updates

1 (0 0 0) 0 0 (.5 .2 .4) (0 0 0)

2 (1 1 1) 1 1.1 (.5 .2 .4) (-.05 -.05 -.05)
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2 (1 1 1) 1 1.1 (.5 .2 .4) (-.05 -.05 -.05)

3 (1 0 0) 1 .45 (.45 .15 

.35)

(.275 0 0)

4 (0 0 1) 1 .35 (.725 .15 

.35)

(0 0 .325)



Completing the Example

� After 18 epochs

– Weights

� W1= 0.990735

� W2= -0.970018005

� W3= 0.98147

� Does this adequately approximate the training data?

W1

W2

W3
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� Does this adequately approximate the training data?

Sample Input Output

1 0 0 0 0

2 1 1 1 1

3 1 0 0 1

4 0 0 1 1



Example

� Actual Outputs

Sample Input Desired

Output

Actual Output

1 0 0 0 0 0
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1 0 0 0 0 0

2 1 1 1 1 1.002187

3 1 0 0 1 0.990735

4 0 0 1 1 0.98147



examples in ANN

� There is a slight difference between the example 

descriptions used for neural networks and those used 

for other attribute-based methods such as decision 

trees. 

� In a neural network, all inputs are real numbers in 

some fixed range, whereas decision trees allow for 
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some fixed range, whereas decision trees allow for 

multivalued attributes with a discrete set of values. 

� For example, an attribute may has values None, Some, 

and Full. 



Perceptron Learning Method

� There are two ways to handle this. 

– Local encoding

� we use a single input unit and pick an appropriate number of distinct 

values to correspond to the discrete attribute values. 

� For example, we can use None = 0.0, Some = 0.5, and Full = 1.0. 

– Distributed encoding
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– Distributed encoding

� we use one input unit for each value of the attribute, turning on the 

unit that corresponds to the correct value.



Multilayer Feed-Forward Neural 

Network
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Network



Multilayer Feed-Forward Neural Network

� A multilayer feed-forward neural network consists of 

several layers includes:

– an input layer, 

– one or more hidden layers, and 

– an output layer.
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Multilayer Feed-Forward Neural Network

� Each layer is made up of units.

� A two-layer neural network has a hidden layer and an 

output layer. 

� The input layer is not counted because it serves only to 

pass the input values to the next layer.

Prediction by Neural Networks

� A network containing two hidden layers is called a 

three-layer neural network, and so on.



Multilayer Feed-Forward Neural Network

� Suppose we want to construct a network for a 

problem. 

� We have ten attributes describing each example, so 

we will need ten input units.

� How many hidden units are needed?
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– The problem of choosing the right number of hidden units 

in advance is still not well-understood.

� We use  a network with four hidden units.



Multilayer Feed-Forward Neural Network

� A two-layer feed-forward network
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Multilayer Feed-Forward Neural Network

� The inputs to the network correspond to the attributes 

measured for each training example.

� Inputs are fed simultaneously into the units making up the 

input layer

� They are then weighted and fed simultaneously to a 

hidden layer
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hidden layer

� The number of hidden layers is arbitrary, although in 

practice, usually only one is used.

� The weighted outputs of the last hidden layer are input to 

units making up the output layer, which sends out the 

network’s prediction.



Multilayer Feed-Forward Neural Network

� The network is feed-forward in that none of the 

weights cycles back to an input unit or to an output 

unit of a previous layer

� From a statistical point of view, networks perform 

nonlinear regression
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nonlinear regression

� Given enough hidden units and enough training 

samples, they can closely approximate any function



Multilayer Feed-Forward Neural Network

� Learning method

– example inputs are presented to the network and the 

network computes an output vector that matches the target.

– If there is an error (a difference between the output and 

target), then the weights are adjusted to reduce this error. 

– The trick is to assess the blame for an error and divide it 
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– The trick is to assess the blame for an error and divide it 

among the contributing weights. 

– In perceptrons, this is easy, because there is only one 

weight between each input and the output. 

– But in multilayer networks, there are many weights 

connecting each input to an output, and each of these 

weights contributes to more than one output.



Defining a Network Topology
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Defining a Network Topology

� First decide the network topology: 

– the number of units in the input layer

– the number of hidden layers (if > 1), 

– the number of units in each hidden layer

– the number of units in the output layer
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� Normalizing the input values for each attribute 

measured in the training examples to [0.0—1.0] will 

help speed up the learning phase.



Defining a Network Topology

� Input units

– Normalizing the input values for each attribute measured in the 

training examples to [0.0—1.0] will help speed up the learning 

phase.

– Discrete-valued attributes may be encoded such that there is one 

input unit per domain value. 

Example, if an attribute A has three possible or known values, 
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� Example, if an attribute A has three possible or known values, 

namely {a0, a1, a2}, then we may assign three input units to represent 

A.  That is, we may have, say, I0, I1, I2 as input units. 

� Each unit is initialized to 0. 

� Then

– I0 is set to 1, If A = a1

– I1 is set to 1, If A = a2

– I2 is set to 1, If A = a3



Defining a Network Topology

� Output unit

– For classification, one output unit may be used to represent 

two classes (where the value 1 represents one class, and the 

value 0 represents the other). 

– If there are more than two classes, then one output unit per 

class is used.
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class is used.



Defining a Network Topology

� Hidden layer units

– There are no clear rules as to the “best” number of hidden 

layer units

– Network design is a trial-and-error process and may affect 

the accuracy of the resulting trained network.
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� Once a network has been trained and its accuracy is 

unacceptable, repeat the training process with a 

different network topology or a different set of 

initial weights



Optimal Network Structure

� Using genetic algorithm: for finding a good network 

structure

� Hill-climbing search (modifying an existing network 

structure)

– Start with a big network: optimal brain damage 

algorithm
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algorithm

� Removing weights from fully connected model

– Start with a small network: tiling algorithm

� Start with single unit and add subsequent units

� Cross-validation techniques: are useful for deciding 

when we have found a network of the right size.



Backpropagation Algorithm
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Backpropagation

� The backpropagation algorithm performs learning 

on a multilayer feed-forward neural network.

� It is the most popular method for learning in multilayer 

networks 

� Backpropagation iteratively process a set of training 
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examples & compare the network's prediction with the 

actual known target value

� The target value may be the known class label of the 

training example (for classification problems) or a 

continuous value (for prediction problems).



Backpropagation

� For each training example, the weights are modified to 

minimize the mean squared error between the 

network's prediction and the actual target value 

� Modifications are made in the “backwards” direction
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– from the output layer, through each hidden layer down to 

the first hidden layer, hence “backpropagation”

– Although it is not guaranteed, in general the weights will 

eventually converge, and the learning process stops.



Backpropagation

� Backpropagation algorithm steps:

– Initialize the weights

� Initialize weights to small random and biases in the network

– Propagate the inputs forward 

� by applying activation function

– Backpropagate the error 
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– Backpropagate the error 

� by updating weights and biases

– Terminating condition 

� when error is very small, etc.



Backpropagation Algorithm

� Input:

– D, a data set consisting of the training examples and their 

associated target values

– l, the learning rate

– network, a multilayer feed-forward network

Output: 
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� Output: 

– A trained neural network.



Initialize the weights

� 1) Initialize the weights

– The weights in the network are initialized to small random 

numbers 

– e.g., ranging from -1.0 to 1.0 or  -0.5 to 0.5 

– Each unit has a bias associated with it

– The biases are similarly initialized to small random 
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– The biases are similarly initialized to small random 

numbers.

� Each training example is processed by the steps 2 

to 8.



Propagate the inputs forward

� 2) determining the output of input layer units

– the training example is fed to the input layer of the network. 

– The inputs pass through the input units, unchanged. 

– For an input unit, j, 

� its input value, Ij

its output, O , is equal to its input value, I .
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� its output, Oj, is equal to its input value, Ij.



Propagate the inputs forward

� 3) compute the net input of each unit in the hidden 

and output layers

– The net input to a unit in the hidden or output layers is 

computed as a linear combination of its inputs. 

– Given a unit j in a hidden or output layer, the net input, Ij, to 

unit j is
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unit j is

� where wij is the weight of the connection from unit i in the previous 

layer to unit j

� Oi is the output of unit i from the previous layer

� Өj is the bias of the unit

∑ +=

i
jiijj OwI θ



Propagate the inputs forward

� A hidden or output layer unit j
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Propagate the inputs forward

� 4) compute the output of each unit j in the hidden 

and output layers 

– The output of each unit is calculating by applying an 

activation function to its net input

– The logistic, or sigmoid, function is used.

– Given the net input I to unit j, then O , the output of unit j, 
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– Given the net input Ij to unit j, then Oj, the output of unit j, 

is computed as:

jIj
e

O
−

+

=

1

1



Backpropagate the Error

� 5) compute the error for each unit j in the output 

layer

– For a unit j in the output layer, the error Errj is computed 

by

))(1( jjjjj OTOOErr −−=
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– Oj is the actual output of unit j, 

– Tj is the known target value of the given training example

– Note that Oj (1 - Oj) is the derivative of the logistic 

function.

jjjjj



Backpropagate the Error

� 6) compute the error for each unit j in the hidden 

layers, from the last to the first hidden layer

– The error of a hidden layer unit j is

jk
k

kjjj wErrOOErr ∑−= )1(
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– wjk is the weight of the connection from unit j to a unit k in 

the next higher layer, and 

– Errk is the error of unit k.

k



Backpropagate the Error

� 7) update the weights for each weight wij in 

network

– Weights are updated by the following equations

ijijij www ∆+=

OErrlw )(=∆
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– ∆wij is the change in weight wij

– The variable l is the learning rate, a constant typically 

having a value between 0.0 and 1.0

ijij OErrlw )(=∆



Backpropagate the Error

� Learning rate

– Backpropagation learns using a method of gradient descent 

– The learning rate helps avoid getting stuck at a local 

minimum in decision space (i.e., where the weights appear 

to converge, but are not the optimum solution) and 

encourages finding the global minimum.
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encourages finding the global minimum.

– If the learning rate is too small, then learning will occur at 

a very slow pace. 

– If the learning rate is too large, then oscillation between 

inadequate solutions may occur. 

– A rule to set the learning rate to 1 / t, where t is the number 

of iterations through the training set so far.



Backpropagate the Error

� 8) update the for each bias Өj in network

– Biases are updated by the following equations below:

jjj θθθ ∆+=

jj Errl)(=∆θ
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– ∆Өj is the change in bias Өj 

– There are two strategies for updating the weights and biases 



Backpropagate the Error

� Updating strategies:

– Case updating

� updating the weights and biases after the presentation of each 

example.

� case updating is more common because it tends to yield more 

accurate result
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– Epoch updating

� The weight and bias increments could be accumulated in variables, 

so that the weights and biases are updated after all of the examples in 

the training set have been presented.

� One iteration through the training set is an epoch.



Terminating Condition

� 9) Checking the stopping condition

– After finishing the processed for all training examples, we 

must evaluate the stopping condition

– Stopping condition: Training stops when

� All ∆wij in the previous epoch were so small as to be below some 

specified threshold, or
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specified threshold, or

� The percentage of examples misclassified in the previous epoch is 

below some threshold, or

� A prespecified number of epochs has expired.

– In practice, several hundreds of thousands of epochs may 

be required before the weights will converge.

– If stopping condition was not true steps 2 to 8 should repeat 

for all training examples



Efficiency of Backpropagation

� The computational efficiency depends on the time 

spent training the network. 

� However, in the worst-case scenario, the number of 

epochs can be exponential in n, the number of inputs. 

� In practice, the time required for the networks to 
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converge is highly variable. 

� A number of techniques exist that help speed up the 

training time.

– Metaheuristic algorithms such as simulated annealing 

algorithm can be used, which also ensures convergence to 

a global optimum.



Example

� The Figure shows a multilayer feed-forward neural network
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Example

� This example shows the calculations for 

backpropagation, given the first training example, X.

� Let the learning rate be 0.9. 

� The initial weight and bias values of the network are 

given in the Table, along with the first training 
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example, X = (1, 0, 1), whose class label is 1.



Example

� The net input and output calculations:

∑ +=

i
jiijj OwI θ
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e+1



Example

� Calculation of the error at each node:

– The output layer

– The hidden layer

))(1( jjjjj OTOOErr −−=

jkkjjj wErrOOErr ∑−= )1(
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Example

� Calculations for weight and bias updating:

ijijij www ∆+=

ijij OErrlw )(=∆
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jjj θθθ ∆+=
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Example

� Several variations and alternatives to the 

backpropagation algorithm have been proposed for 

classification in neural networks. 

� These may involve:

– the dynamic adjustment of the network topology and of the 

learning rate 
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learning rate 

– New parameters

– The use of different error functions



Backpropagation and 

Interpretability
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Interpretability



Backpropagation and Interpretability

� Neural networks are like a black box. 

� A major disadvantage of neural networks lies in their 

knowledge representation.

� Acquired knowledge in the form of a network of units 

connected by weighted links is difficult for humans to 

interpret.
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interpret.

� This factor has motivated research in extracting the 

knowledge embedded in trained neural networks and in 

representing that knowledge symbolically. 

� Methods include:

– extracting rules from networks

– sensitivity analysis



Backpropagation and Interpretability

� Often the first step toward extracting rules from neural 

networks is network pruning

– This consists of simplifying the network structure by 

removing weighted links that have the least effect on the 

trained network.
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Backpropagation and Interpretability

� Rule extraction from networks

– Often, the first step toward extracting rules from neural 

networks is network pruning. 

� This consists of simplifying the network structure by removing 

weighted links that have the least effect on the trained network

– Then perform link, unit, or activation value clustering
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– Then perform link, unit, or activation value clustering

� In one method, for example, clustering is used to find the set of 

common activation values for each hidden unit in a given trained 

two-layer neural network.

– The set of input and activation values are studied to derive 

rules describing the relationship between the input and 

hidden unit layers



Backpropagation and Interpretability

� Rules can be extracted from training neural networks
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Backpropagation and Interpretability
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Backpropagation and Interpretability

� Sensitivity analysis

– assess the impact that a given input variable has on a 

network output.  

– The knowledge gained from this analysis can be 

represented in rules

– Such as “IF X decreases 5% THEN Y increases 8%.”
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– Such as “IF X decreases 5% THEN Y increases 8%.”



Discussion
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Discussion

� Weakness of neural networks

– Long training time 

– Require a number of parameters typically best determined 

empirically

� e.g., the network topology or structure.

– Poor interpretability
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– Poor interpretability

� Difficult to interpret the symbolic meaning behind the learned 

weights and of “hidden units” in the network



Discussion

� Strength of neural networks

– High tolerance to noisy data 

– It can be used when you may have little knowledge of the 

relationships between attributes and classes

– Well-suited for continuous-valued inputs and outputs

– Successful on a wide array of real-world data
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– Successful on a wide array of real-world data

– Algorithms are inherently parallel

– Techniques have recently been developed for the extraction 

of rules from trained neural networks



Research Areas

� Finding optimal network structure

– e.g. by genetic algorithms

� Increasing learning speed (efficiency)

– e.g. by simulated annealing

� Increasing accuracy (effectiveness)
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� Increasing accuracy (effectiveness)

� Extracting rules from networks



References

Prediction by Neural Networks



References

� J. Han, M. Kamber, Data Mining: Concepts and 

Techniques, Elsevier Inc. (2006). (Chapter 6)

� S. J. Russell and P. Norvig, Artificial Intelligence, A 

Modern Approach, Prentice Hall,1995. (Chapter 19)

Prediction by Neural Networks



The end
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