Data Mining Part 4. Prediction

4.7 Regression Analysis

Fall 2009

Instructor: Dr. Masoud Yaghini

Outline

- Introduction
- Linear Regression
- Other Regression Models
- References

• Numerical prediction is similar to classification

- construct a model
- use model to predict continuous or ordered value for a given input

Numeric prediction vs. classification

- Classification refers to predict categorical class label
- Numeric prediction models continuous-valued functions

- Regression analysis is the major method for numeric prediction
- Regression analysis model the relationship between
 - one or more independent or predictor variables and
 - a **dependent** or **response** variable
- Regression analysis is a good choice when all of the predictor variables are continuous valued as well.

- In the context of data mining
 - The predictor variables are the attributes of interest describing the instance that are known.
 - The response variable is what we want to predict
- Some classification techniques can be adapted for prediction, e.g.
 - Backpropagation
 - k-nearest-neighbor classifiers
 - Support vector machines

• Regression analysis methods:

- Linear regression
 - Straight-line linear regression
 - Multiple linear regression
- Non-linear regression
- Generalized linear model
 - Poisson regression
 - Logistic regression
- Log-linear models
- Regression trees and Model trees

Linear Regression

Linear Regression

• Straight-line linear regression:

- involves a response variable y and a single predictor variable x
 - $\mathbf{y} = \mathbf{w}_0 + \mathbf{w}_1 \mathbf{x}$
- w_0 : y-intercept
- w_1 : slope
- $w_0 \& w_1$ are **regression coefficients**

Linear regression

• Method of least squares: estimates the best-fitting straight line as the one that minimizes the error between the actual data and the estimate of the line.

$$w_1 = \frac{\sum_{i=1}^{|D|} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{|D|} (x_i - \bar{x})^2}$$

$$w_0 = \bar{y} - w_1 \bar{x}$$

- *D:* a training set
- *x*: values of predictor variable
- *y*: values of response variable
- *|D|*: data points of the form(*x*1, *y*1), (*x*2, *y*2),..., (*x|D|*, *y|D|*).
- \overline{x} : the mean value of x1, x2, ..., x/D/
- \mathcal{Y} : the mean value of y1, y2, ..., y/D/

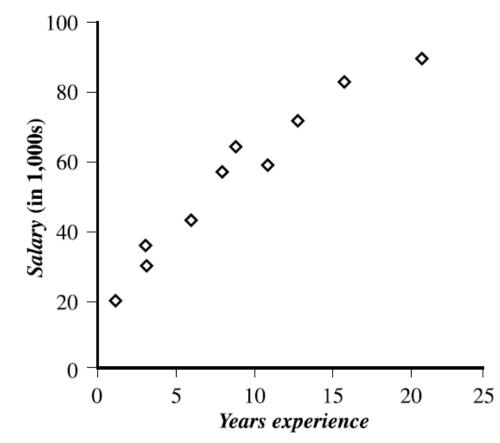
Example: Salary problem

• The table shows a set of paired data where *x* is the number of years of work experience of a college graduate and *y* is the corresponding salary of the graduate.

x years experience	y salary (in \$1000s)
3	30
8	57
9	64
13	72
3	36
6	43
11	59
21	90
1	20
16	83

Linear Regression

- The 2-D data can be graphed on a scatter plot.
- The plot suggests a linear relationship between the two variables, *x and y*.



Example: Salary data

• Given the above data, we compute

$$\bar{x} = 9.1$$
 and $\bar{y} = 55.4$

• we get

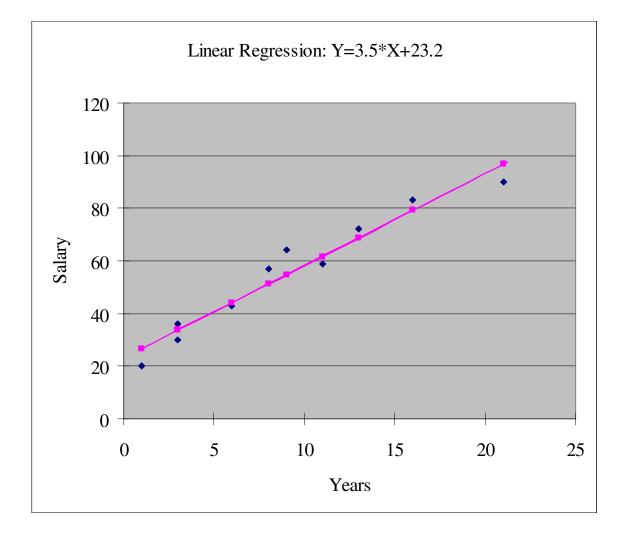
$$w_1 = \frac{(3-9.1)(30-55.4) + (8-9.1)(57-55.4) + \dots + (16-9.1)(83-55.4)}{(3-9.1)^2 + (8-9.1)^2 + \dots + (16-9.1)^2} = 3.5$$

$$w_0 = 55.4 - (3.5)(9.1) = 23.6$$

• The equation of the least squares line is estimated by

$$y = 23.6 + 3.5x$$

Example: Salary data



Multiple linear regression

- Multiple linear regression involves more than one predictor variable
- Training data is of the form (X₁, y₁), (X₂, y₂),..., (X_{|D|}, y_{|D|})
- where the X_i are the n-dimensional training data with associated class labels, y_i
- An example of a multiple linear regression model based on two predictor attributes:

$$y = w_0 + w_1 x_1 + w_2 x_2$$

Example: CPU performance data

	Cycle		ain ry (KB)	Cache	Channels		
	time (ns) MYCT	Min. MMIN	Max. MMAX	(KB) CACH	Min. CHMIN	Max. CHMAX	Performance PRP
1	125	256	6000	256	16	128	198
2	29	8000	32000	32	8	32	269
3	29	8000	32000	32	8	32	220
4	29	8000	32000	32	8	32	172
5	29	8000	16000	32	8	16	132
207 208 209	125 480 480	2000 512 1000	8000 8000 4000	0 32 0	2 0 0	14 0 0	52 67 45

 $PRP = -55.9 + 0.0489 \text{ MYCT} + 0.0153 \text{ MMIN} + 0.0056 \text{ MMAX} \\ + 0.6410 \text{ CACH} - 0.2700 \text{ CHMIN} + 1.480 \text{ CHMAX}.$

Multiple Linear Regression

- Various statistical measures exist for determining how well the proposed model can predict y (described later).
- Obviously, the greater the number of predictor attributes is, the slower the performance is.
- Before applying regression analysis, it is common to perform attribute subset selection to eliminate attributes that are unlikely to be good predictors for *y*.
- In general, regression analysis is accurate for numeric prediction, except when the data contain outliers.

Other Regression Models

Nonlinear Regression

 If data that does not show a linear dependence we can get a more accurate model using a nonlinear regression model

• For example,

 $y = w_0 + w_1 x + w_2 x^2 + w_3 x^3$

Generalized linear models

- Generalized linear model is foundation on which linear regression can be applied to modeling categorical response variables
- Common types of generalized linear models include
 - Logistic regression: models the probability of some event occurring as a linear function of a set of predictor variables.
 - Poisson regression: models the data that exhibit a Poisson distribution

Log-linear models

- In the log-linear method, all attributes must be categorical
- Continuous-valued attributes must first be discretized.

Regression Trees and Model Trees

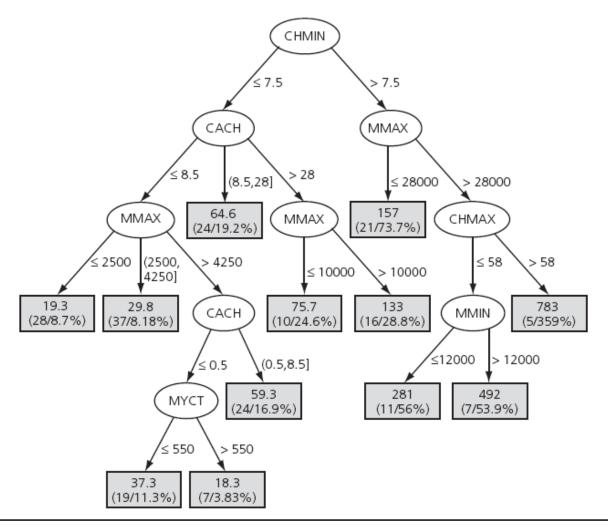
- Trees to predict continuous values rather than class labels
- Regression and model trees tend to be more accurate than linear regression when the data are not represented well by a simple linear model

Regression trees

- Regression tree: a decision tree where each leaf predicts a numeric quantity
- Proposed in CART system (Breiman et al. 1984)
 - CART: Classification And Regression Trees
- Predicted value is average value of training instances that reach the leaf

Example: CPU performance problem

Regression tree for the CPU data



Example: CPU performance problem

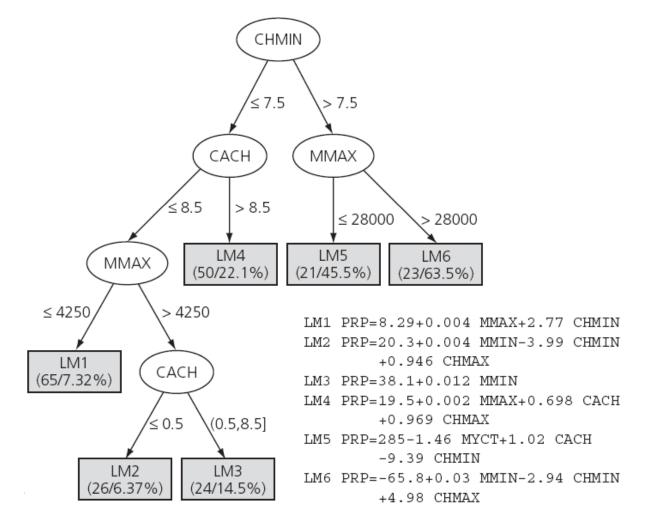
- We calculate the average of the absolute values of the errors between the predicted and the actual CPU performance measures
- It turns out to be significantly less for the tree than for the regression equation.

Model tree

- Model tree: Each leaf holds a regression model
- A multivariate linear equation for the predicted attribute
- Proposed by Quinlan (1992)
- A more general case than regression tree

Example: CPU performance problem

Model tree for the CPU data



References

References

• J. Han, M. Kamber, **Data Mining: Concepts and Techniques**, Elsevier Inc. (2006). (Chapter 6)

 I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, 2nd Edition, Elsevier Inc., 2005. (Chapter 6)

The end