Data Mining Part 4. Prediction

4.8. Credibility of a Predictor

Fall 2009

Instructor: Dr. Masoud Yaghini

Outline

- Training and Testing Data Sets
- Predicting Performance
- Cross Validation
- Comparing Data Mining Methods
- Evaluating Numeric Prediction
- References

Training and Testing Data Sets

Evaluation: the key to success

- Error on the training data is *not* a good indicator of performance on future data
 - Otherwise 1NN would be the optimum classifier!
- Simple solution that can be used:
 - Split data into training and test set
- Statistical reliability of estimated differences in performance (-> significance tests)

Issues in evaluation

- Choice of performance measure:
 - Number of correct classifications
 - e.g. decision tree
 - Accuracy of probability estimates
 - e.g. in Naïve Bayesian Classification
 - Error in numeric predictions
 - e.g. in regression analysis

Training and Testing

- Natural performance measure for classification models: *error rate*
 - **Success**: instance's class is predicted correctly
 - Error: instance's class is predicted incorrectly
 - Error rate: proportion of errors made over the whole set of instances
- Resubstitution error: error rate obtained from training data

Training and testing

- Test set: independent instances that have played no part in formation of predictor
 - Assumption: both training data and test data are representative samples of the underlying problem
- Test and training data may differ in nature
 - Example: classifiers built using customer data from two different towns A and B
 - To estimate performance of classifier from town A in completely **new town**, test it on data from B

Note on parameter tuning

- It is important that the test data is not used in any way to create the classifier
- Some learning schemes operate in two stages:
 - Stage 1: build the basic structure
 - Stage 2: optimize parameter settings
- The test data can't be used for parameter tuning!

Note on parameter tuning

- Proper procedure uses three sets:
 - Training data: is used to build the basic structure
 - Validation data: is used to optimize parameters or to select a particular method
 - Test data: is used to calculate the error rate of the final method

Making the most of the data

- Once evaluation is complete, all the data can be used to build the final classifier
- Generally,
 - The larger the training data the better the classifier
 - The larger the test data the more accurate the error estimate
- Holdout procedure: method of splitting original data into training and test set
 - Ideally both training set and test set should be large!

Predicting Performance

Predicting performance

- Assume the estimated error rate is 25%.
- How close is this to the true error rate?
- To answer these questions, we need some statistical reasoning.
 - Depends on the amount of test data

Confidence intervals

- Suppose p is success rate, that out of N trials, S are successes: thus the observed success rate is f = S/N
- We can say: p lies within a certain specified interval with a certain specified confidence
- Example: *S*=750 successes in *N*=1000 trials
 - Estimated success rate: 75%
 - How close is this to true success rate p?
 - Answer: with 80% confidence *p* in [73.2,76.7]
- Another example: S=75 and N=100
 - Estimated success rate: 75%
 - With 80% confidence *p* in [69.1,80.1]

Cross Validation

Holdout Estimation

Holdout method

- The holdout method reserves a certain amount for testing and uses the remainder for training
- Usually: **one third** for testing, the rest for training
- Problem: the samples might not be representative
 - Example: class might be missing in the test data
- Stratified Holdout Method
 - Ensures that each class is represented with approximately equal proportions in both subsets

Repeated holdout method

Repeated holdout method

- Holdout estimate can be made more reliable by repeating the process with different subsamples
- In each iteration, a certain proportion is randomly selected for training
- The error rates on the different iterations are averaged to yield an overall error rate
- This is called the repeated holdout method
- Still not optimum: the different test sets overlap
 - Can we prevent overlapping?

Cross Validation

Cross-validation method

- Cross-validation avoids overlapping test sets
- First step: split data into k subsets of equal size
- Second step: use each subset in turn for testing, the remainder for training
- Called k-fold cross-validation
- Often the subsets are stratified before the crossvalidation is performed
- The error estimates are averaged to yield an overall error estimate

More on cross-validation

Standard method for evaluation:

- stratified ten-fold cross-validation
- Why ten?
 - Extensive experiments have shown that this is the best choice to get an accurate estimate
 - There is also some theoretical evidence for this
- Stratification reduces the estimate's variance
- Repeated stratified cross-validation
 - Even better
 - E.g. ten-fold cross-validation is repeated ten times and results are averaged (reduces the variance)

Comparing Data Mining Methods

Comparing data mining methods

- Frequent question: which of two learning methods performs better?
 - this is domain dependent!
 - Obvious way: compare 10-fold CV estimates
- How about, when a new learning algorithm is proposed?
 - Need to show that a particular method works really better

Comparing data mining methods

- Want to show that method A is better than method B in a particular domain
 - For a given amount of training data
 - On average, across all possible training sets
- Let's assume we have an infinite amount of data from the domain:
 - Sample infinitely many dataset of specified size
 - Obtain cross-validation estimate on each dataset for each method
 - Check if mean accuracy for method A is better than mean accuracy for method B

Paired t-test

- In practice we have limited data and a limited number of estimates for computing the mean
- Student's t-test tells whether the means of two samples are significantly different
- In our case the samples are cross-validation estimates for different datasets from the domain
- Use a *paired* t-test because the individual samples are paired
 - The same CV is applied twice

Evaluating Numeric Prediction

Evaluating numeric prediction

- Strategies: independent test set, cross-validation, significance tests, etc.
- Difference: error measures
- Actual target values: $a_1 a_2 \dots a_n$
- Predicted target values: $p_1 p_2 \dots p_n$
- Most popular measure: mean-squared error

$$(p_1 - a_1)^2 + \ldots + (p_n - a_n)^2$$

п

- Easy to manipulate mathematically

Other measures

• The root mean-squared error:

$$\sqrt{\frac{\left(p_1-a_1\right)^2+\ldots+\left(p_n-a_n\right)^2}{n}}$$

• The mean absolute error:

$$\frac{|p_1-a_1|+\ldots+|p_n-a_n|}{n}$$

is less sensitive to outliers than the mean-squared error:

Improvement on the mean

- How much does the scheme improve on simply predicting the average?
- The *relative squared error* is:

$$\frac{(p_1-a_1)^2+\ldots+(p_n-a_n)^2}{(a_1-\overline{a})^2+\ldots+(a_n-\overline{a})^2}, \text{ where } \overline{a}=\frac{1}{n}\sum_i a_i$$

• The *relative absolute error* is:

$$\frac{|p_1-a_1|+\ldots+|p_n-a_n|}{|a_1-\overline{a}|+\ldots+|a_n-\overline{a}|}$$

Correlation coefficient

 Measures the statistical correlation between the predicted values and the actual values

$$\frac{S_{PA}}{\sqrt{S_P S_A}}, \text{ where } S_{PA} = \frac{\sum_i (p_i - \overline{p})(a_i - \overline{a})}{n - 1},$$
$$S_p = \frac{\sum_i (p_i - \overline{p})^2}{n - 1}, \text{ and } S_A = \frac{\sum_i (a_i - \overline{a})^2}{n - 1}$$

Scale independent, between -1 and +1
Good performance leads to large values!

Which measure?

- Best to look at all of them
- Often it doesn't matter
- Example: Performance measures for four numeric prediction models

	А	В	С	D
root mean-squared error	67.8	91.7	63.3	57.4
mean absolute error	41.3	38.5	33.4	29.2
root relative squared error	42.2%	57.2%	39.4%	35.8%
relative absolute error	43.1%	40.1%	34.8%	30.4%
correlation coefficient	0.88	0.88	0.89	0.91

References

References

 I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, 2nd Edition, Elsevier Inc., 2005. (Chapter 5)

The end