Data Mining SPSS Clementine 12.0

7. C5.0 Algorithm

Spring 2010

Instructor: Dr. Masoud Yaghini

Outline

• Overview

- Deriving a New Field
- Building a Model
- C5.0 Node
- Browsing the Model
- Using an Analysis Node
- References

Overview

Overview

- The C5.0 node builds either a decision tree or a rule set.
- The model works by splitting the sample based on the field that provides the maximum information gain at each level.
- The target field must be categorical. Multiple splits into more than two subgroups are allowed.

Drug Treatments

- For this section, imagine that you are a medical researcher compiling data for a study.
- You have collected data about a set of patients, all of whom suffered from the same illness.
- During their course of treatment, each patient responded to one of five medications.
- Part of your job is to use data mining to find out which drug might be appropriate for a future patient with the same illness.
- This example uses the data file named DRUG1n.

Drug Treatments

• The data fields used in the demo are:

Data field	Description
Age	(Number)
Sex	M or F
BP	Blood pressure: HIGH, NORMAL, or LOW
Cholesterol	Blood cholesterol: NORMAL or HIGH
Na	Blood sodium concentration
K	Blood potassium concentration
Drug	Prescription drug to which a patient responded

Building Data Stream

- You can read in delimited text data using a Variable File node.
- You can add a Variable File node from Sources tab
- Next, double-click the newly placed node to open its dialog box.

Reading in Text Data

• Adding a Variable File node

Reading in Text Data

• Variable File dialog box

🔶 Yar. File	×
Refresh	
C:\Program Files\SPSSInc\Clementine12.0\Demos\DRUG1n	
File: C:\Program Files\SPSSInc\Clementine12.0\Demos\DRUG1n	
Age,Sex,BP,Cholesterol,Na,K,Drug 23,F,HIGH,HIGH,0.792535,0.031258,drugY 47,M,LOW,HIGH,0.739309,0.056468,drugC 47,M,LOW,HIGH,0.697269,0.068944,drugC	
Read field names from file Specify number of fields	
Skip header characters: 0 = EOL comment characters:	
Strip lead and trail spaces: 💿 None 🔘 Left 🔘 Right 🔘 Both	
Invalid characters: Discard Replace with 	
Encoding: Stream default 👻 Decimal symbol: Stream default 👻	
Delimiters Lines to scan for type: 50 🜩	
Space 🗹 Comma 🗌 Tab	
✓ Newline Other Single quotes: Discard	
□ Non-printing characters Double guotes: Discard	
Allow multiple blank delimiters	
File Data Filter Types Annotations	
OK Cancel Apply E	Reset

- Since the ratio of sodium to potassium seems to predict when to use drug *Y*, you can derive a field that contains the value of this ratio for each record.
- This field might be useful later when you build a model to predict when to use each of the five drugs.
- Add a Derive node into the stream, then double-click the node to edit it.

- Name the new field *Na_to_K*.
- Since you obtain the new field by dividing the sodium value by the potassium value, enter Na/K for the formula.

♦ Na_to_K	×
Derive as: Formula	20
Mode: 💿 Single 🔘 Multiple	
Derive field:	
Na_to_K	
Derive as: Formula 🔹 Field type: 🥜 <default> 👻 Formula:</default>	
Na/K	
Settings Annotations	
OK Cancel Apply	<u>R</u> eset

• You can check the distribution of your new field by attaching a Histogram node to the Derive node.

• In the Histogram node dialog box, specify *Na_to_K* as the field to be plotted and *Drug* as the overlay field.

🔶 ?	X
(Х: Na_to_К	20
Field: 🗳 Na_to_K	-1
Overlay Color: <mark> Drug T</mark> Panel: Animation:	-
Plot Options Appearance Output Annotations	
OK Execute Cancel Apply E	Reset

• Execute the stream. Based on the display, you can conclude that when the *Na_to_K* value is about 15 or above, drug *Y* is the drug of choice.

- By exploring and manipulating the data, you have been able to form some hypotheses.
- The ratio of sodium to potassium in the blood seems to affect the choice of drug, as does blood pressure.
- But you cannot fully explain all of the relationships yet.
- This is where modeling will likely provide some answers.
- In this case, you will use try to fit the data using a rulebuilding model, C5.0.

- Since you are using a derived field, *Na_to_K*, you can filter out the original fields, Na and K, so that they are not used twice in the modeling algorithm.
- You can do this using a Filter node.

- On the Filter tab, click the arrows next to Na and K.
- Red Xs appear over the arrows to indicate that the fields are now filtered out.

		lds: 8 in, 2 filtered, 0 renamed, 6 out					
Field 🗆	Filter	Field					
Age		Age					
Sex	\equiv	Sex BP					
Cholesterol	$\xrightarrow{\times}$	Cholesterol					
Na	- X ->	Na					
K	_ × →	K					
Drug	\rightarrow	Drug					
Na_to_K	\rightarrow	Na_to_K					
View current fields View unused field settings Filter Annotations OK Cancel <u>Apply R</u> eset							

• Change the default name of Filter node to Discard Fields

🔶 Filter	×
	0
Name: 🔷 Auto 💿 Custom Discard Fields	
Tooltip text:	
Keywords:	
Created on January 1, 2010 7:27 PM by Administrator.	ID: d5GYY15LYPD1
This object has not been saved.	
Filter Annotations	
OK Cancel	<u>Apply</u> <u>R</u> eset

- Attach a Type node connected to the Filter node.
- The Type node allows you to indicate the types of fields that you are using and how they are used to predict the outcomes.

- On the Types tab, set the direction for the Drug field to Out, indicating that Drug is the field you want to predict.
- Leave the direction for the other fields set to In so they will be used as predictors.

		<i>a</i> –				
·•• * /	De	efine Types				
~ 60 60	▶ Read Values C	lear Values	Clear All Value	es		
Field	Туре	Values	Missing	Check	Direction	
今 Age	🔗 Range	<read></read>	1	None	📐 In	
A Sex	🐓 Discrete	<read></read>	1	None	📐 In	
A BP	🐓 Discrete	≺Read≻	1	None	📐 In	
A Cholesterol	🐓 Discrete	≺Read≻	1	None	📐 In	
A Drug	🐓 Discrete	≺Read≻	1	None	<u></u> In	
🎗 Na_to_K	🞸 <default></default>	≺Read≻	1	None	🔄 🔽 In	
					🙆 Out	
					🐌 Both	
					🛇 None	
 View current fi 	elds i 🔘 View unused fie	ld settings			🗮 Partition	
Types Forma	t Annotations					
	OK Cancel Apply					

• Change the default name of Type node to Define Types

🔶 Туре	×
	0
Name: O Auto Custom Define Types	
Tooltip text:	
Keywords:	
Created on January 1, 2010 7:31 PM by Administrator.	ID: Id14QY15LVTUF
This object has not been saved.	
Types Format Annotations	
OK Cancel	Apply Reset

- To estimate the model, place a C5.0 node in the workspace and attach it to the end of the stream as shown.
- Then click the green Execute button to execute the stream.

- This node uses the C5.0 algorithm to build either a **decision tree** or a **rule set**.
- A C5.0 model works by splitting the sample based on the field that provides the maximum **information** gain.
- Each subsample defined by the first split is then split again, usually based on a different field, and the process repeats until the subsamples cannot be split any further.
- Finally, the lowest-level splits are reexamined, and those that do not contribute significantly to the value of the model are removed or **pruned**.

• The C5.0 node can predict only a categorical target (Set or Ordered Set fields).

• Requirements

- To train a C5.0 model, there must be one categorical (i.e., Set or Ordered Set) Out field, and one or more In fields of any type.
- Fields set to **Both** or **None** are ignored.
- Fields used in the model must have their types fully instantiated (their type can not be string or type less).

• Strengths

- C5.0 models are quite robust in the presence of problems such as missing data and large numbers of input fields.
- They usually do not require long training times to estimate.
- In addition, C5.0 models tend to be easier to understand than some other model types, since the rules derived from the model have a very straightforward interpretation.
- C5.0 also offers the powerful **boosting method** to increase accuracy of classification.

• C5.0 Node Model Options

	→ Drug
	Model name: 💿 Auto 🔿 Custom
	✓ Use partitioned data
	Output type: 💿 Decision tree 🔘 Rule set
	Group symbolics
	Use boosting Number of trials: 10
	Cross-validate Number of folds: 10
	Mode: Simple Expert
	Favor: 💿 Accuracy 🔾 Generality
	Expected noise (%):
	Fields Model Costs Analyze Annotations
	OK <u>Execute</u> Cancel <u>Apply R</u> eset
ne [¯]	

C5.0 Node Model Options

• Model name:

- Specify the name of the model to be produced.
- Auto
 - With this option selected, the model name will be generated automatically, based on the target field name(s). This is the default.
- Custom
 - Select this option to specify your own name for the model nugget that will be created by this node.

• Output type

 Specify here whether you want the resulting model nugget to be a Decision tree or a Rule set.

C5.0 Node Model Options

• Group symbolics

- If this option is selected, C5.0 will attempt to combine symbolic values that have similar patterns with respect to the output field.
- If this option is not selected, C5.0 will create a child node for every value of the symbolic field used to split the parent node.
- For example,
 - if C5.0 splits on a COLOR field (with values RED, GREEN, and BLUE), it will create a three-way split by default.
 - However, if this option is selected, and the records where COLOR = RED are very similar to records where COLOR = BLUE, it will create a two-way split, with the GREENs in one group and the BLUEs and REDs together in the other.

• When the C5.0 node is executed, the generated model node is added to the Models tab. To browse the model, right-click the icon and choose Browse from the context menu.

	Add <u>T</u> o Stream		10
	<u>B</u> rowse		> <u>rug</u>
	<u>R</u> ename and Annotate		
8	Generate Modeling Node		
	<u>S</u> ave Model		
	S <u>a</u> ve Model As		
₹	Sto <u>r</u> e Model		
	Ex <u>p</u> ort PMML		
	Add to Project		ISP-DM
×	<u>D</u> elete	Delete	🖻 (unsav
_			🗖 🌽 Bu:

• The Rule browser displays the set of rules generated by the C5.0 node in a decision tree format.

• Initially, the tree is collapsed. To expand it, click the All button to show all levels.

- Now you can see the missing pieces of the puzzle. For people with an *Na-to-K* ratio less than 14.642 and high blood pressure, age determines the choice of drug.
- For people with low blood pressure, cholesterol level seems to be the best predictor.

- The same decision tree can be viewed in a more sophisticated graphical format by clicking the Viewer tab.
- Here, you can see more easily the number of cases for each blood pressure category, as well as the percentage of cases.

- You can assess the accuracy of the model using an Analysis node.
- First, attach the C5.0 model to the stream, and then attach an Analysis node.

• The Analysis node output shows that with this artificial dataset, the model correctly predicted the choice of drug for almost every record in the dataset.

🔍 Analysis	s of [Drug]				
[<mark>≣</mark> <u>F</u> ile	じ <u>E</u> dit 🛛 🔢	2			×0
Colla	apse All	🌳 Expa	and All		
⊡…Results	s for output field	d Drug			
. Ė…Cor	nparing \$C-Dr	ug with D)rug		
	Correct	199	99.5%		
	Wrong	1	0.5%		
	Total	200			
Analysis	Annotations				
					ОК

• With a real dataset you are unlikely to see 100% accuracy, but you can use the Analysis node to help determine whether the model is acceptably accurate for your particular application.

References

References

• Clementine® 12.0 Clementine Applications Guide, 2007. (Chapter 8)

• Clementine® 12.0 Clementine Modeling Nodes, 2007. (Chapter 6)

The end