Data Mining
Part 1. Introduction

1.3 Data Mining Functionalities

Spring 2010

Instructor: Dr. Masoud Yaghini



Outline

e Introduction

e Mining Associations Rules
e Classification

e Numeric Prediction

e Cluster Analysis

e Interesting Patterns

e References

Data Mining Functionalities




Introduction

Data Mining Functionalities




Introduction

e Data mining tasks

— Descriptive data mining

¢ characterize the general properties of the data in the
database.

— Predictive data mining

¢ perform inference on the current data in order to make
predictions.
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Introduction

e Different views lead to different classifications of
data mining functionalities:
— Data view: Kinds of data to be mined
¢ €.g. numeric, categorical, mixed, & ...

— Knowledge view: Kinds of knowledge to be
discovered

¢ e.g. decision tree, classification rules, & ...
— Method view: Kinds of techniques utilized
¢ e.g. neural networks, SVM, & ...

— Application view: Kinds of applications adapted
¢ e.g. marketing, medicine, railway, & ...
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Introduction

e Knowledge view

— Data mining functionalities are used to specify the
kind of patterns to be found in data mining tasks.

e Main functionalities
— Mining Association Rules
— Classification
— Numeric Prediction
— Cluster Analysis
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Mining Association Rules
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Frequent Patterns

e Frequent patterns are patterns that occur
frequently in data.

e The kinds of frequent patterns

— Frequent itemsets patterns: refers to a set of items
that frequently appear together in a transactional data
set, such as milk and bread.

— Frequent sequential patterns: such as the pattern
that customers tend to purchase first a PC, followed
by a digital camera, and then a memory card, is a
(frequent) sequential pattern.

e Mining frequent patterns leads to the discovery of
Interesting associations and correlations within data.
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Association Rules

e Suppose, as a marketing manager of
AllElectronics, you would like to determine which
items are frequently purchased together within
the same transactions.

e An example of association rule from the
AllElectronics transactional database, Is:

buys(X., “computer”) = buys(X, “software”) |support = 1%, confidence = 50%)

— where X is a variable representing a customer.
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Association Rules

e A confidence, or certainty, of 50% means that if
a customer buys a computer, there is a 50%
chance that she will buy software as well.

e A 1% rule support means that 1% of all of the
transactions under analysis showed that
computer and software were purchased together.

e This association rule involves a single attribute
or predicate (i.e., buys) that repeats.

e Association rules that contain a single predicate
are referred to as single-dimensional
association rules.
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Association Rules

e We may find association rules like:
age(X, “20...29”) A income(X, “20K...29K”) = buys(X, “CD player”)

support = 2%, confidence = 60%]

— The rule indicates that of the AllElectronics customers under
study, 2% are 20 to 29 years of age with an income of 20,000 to
29,000 and have purchased a CD player at AllElectronics.

— There is a 60% probability that a customer in this age and
income group will purchase a CD player.

e This is an association between more than one
attribute (i.e., age, income, and buys).

e This is a multidimensional association rule.
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Support and confidence of a rule

e Example: 4 cool days with normal humidity

If temperature = cool then humidity = normal
— Support = 4, confidence = 100%

e Normally: minimum support and confidence prespecified,
e.g. support >= 2 and confidence >= 95% for weather
data
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Interpreting association rules

e Interpretation is not obvious:

If windy = false and play = no then outlook = sunny

e IS not the same as

If windy = false and play
If windy = false and play

and humidity = high

no then outlook = sunny
no then humidity = high

e It means that the following also holds:

If humidity = high and windy = false and play = no

then outlook = sunny
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Association Rules

e Large number of possible associations

— QOutput needs to be restricted to show only the most
predictive associations

e Association rules are interesting if they do satisty
both:

— A minimum support threshold: number of instances
predicted correctly

— A minimum confidence threshold: number of
correct predictions, as proportion of all instances that
rule applies to
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Association Rules

e Association learning is unsupervised

e Association rules usually involve only nonnumeric
attributes

e Additional analysis can be performed to uncover
Interesting statistical correlations between
associated attribute-value pairs.
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Association Rules

e Examples of association rule algorithms:
— Apriori Algorithm
— FP-growth Algorithm
— Tree-Projection algorithm

— ECLAT (Equivalence CLASS Transformation)
algorithm
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Classification
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Classification

e Classification

— Construct models (functions) that describe and
distinguish classes or concepts to predict the class of
objects whose class label is unknown

e Example:
— In weather problem the play or don’t play judgment
— In contact lenses problem the lens recommendation
e Classification learning is supervised
— Process is provided with actual outcome
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Training vs. Test Data Set

e Training data set

— The derived model is based on the analysis of a set
of training data (i.e., data objects whose class label
IS Known).

e Test data set

— Using an independent set of test data for which class
labels are known but not made available to the
machine.

— This data set is used to evaluate the success of
classification learning
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Classification

e Examples of classification output:
— Decision tree
— Classification rules
— Neural networks
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Decision trees

e “Divide and conquer” approach produces
decision tree

e Nodes involve testing a particular attribute
e Usually, attribute value is compared to constant

e Other possibilities:
— Comparing values of two attributes
— Using a function of one or more attributes
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Decision trees

e Leaf nodes

— give a classification that applies to all instances that
reach the leaf

— set of classifications
— probability distribution over all possible classifications

e To classify an unknown instance,

— 1t is routed down the tree according to the values of
the attributes tested in successive nodes, and

— when a leaf is reached the instance is classified
according to the class assigned to the leaf.
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Nominal and numeric attributes

e If the attribute is nominal:

— Number of children usually equal to the number of
possible values

— Usually attribute won't get tested more than once
e If the attribute is numeric:

— Test whether value is greater or less than constant

— Attribute may get tested several times

— Other possibility: three-way split (or multi-way split)

¢ Integer: less than, equal to, greater than
+ Real: below, within, above
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Decision tree for the labor data
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per week
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Classification rules

e Popular alternative to decision trees

e Rules include two parts:

— Antecedent or precondition:

¢ a series of tests just like the tests at the nodes of a decision
tree

¢ Tests are usually logically ANDed together
¢ All the tests must succeed if the rule is to fire
— Consequent or conclusion:

¢ The class or set of classes or probability distribution assigned
by rule

e Example: A rule from contact lens problem

If tear production rate = reduced then recommendation = none
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From trees to rules

e Easy: converting a tree into a set of rules

— One rule for each leaf:

+ Antecedent contains a condition for every node on the path
from the root to the leaf

¢ Consequent is class assigned by the leaf
e Produces rules that are very clear
— Doesn’t matter in which order they are executed

e But: resulting rules are unnecessarily complex
— It needs to remove redundant tests/rules
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From rules to trees

e More difficult: transforming a rule set into a tree
— Tree cannot easily express disjunction between rules

e Example: rules which test different attributes

If x=1 and y=0 then class = a
If x=0 and y=1 then class = a
If x=0 and y=0 then class = b

If x=1 and y=1 then class = b
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From rules to trees

The exclusive-or problem

I ) b
0 i a
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If x=1 and y=0 then class = a
If x=0 and y=1 then class = a
If x=0 and y=0 then class=b

If x=1 and y=1 then class=b

Yes
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A tree with a replicated subtree

e If it Is possible to have a “default” rule that covers
cases not specified by the other rules, rules are
much more compact than trees

e There are four attributes, x, y, z, and w, each can
be 1,2,0r3

If x=1 and y=1 then class = a
It z=1 and w=1 then class = a

Otherwise class = b
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A tree with a replicated subtree

e Replicated subtree problem: tree contains identical
subtrees

It x=1 and y=1 then class = a

If z=1 and w=1 then class = a

Otherwise class = b
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Executing a rule set

e Two ways of executing a rule set:
— Ordered set of rules (“decision list”)
¢ Order is important for interpretation

— Unordered set of rules

¢ Rules may overlap and lead to different conclusions for the
same instance
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Neural Network

e A neural network, when used for classification, is
typically a collection of neuron-like processing units with
weighted connections between the units.
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Classification Techniques

e Examples of classification techniques:
— Decision Trees
— Classification Rules
— Neural Network
— Naive Bayesian classification
— Support vector machines
— k-nearest neighbor classification
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Classification vs. Association Analysis

e Difference association analysis to classification
learning:
— Can predict any attribute’s value, not just the class
— More than one attribute’s value at a time

— There are more association rules than classification
rules
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Numeric Prediction
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Numeric prediction

e Numeric prediction:
— predicting a numeric quantity
e Numeric prediction is a variant of classification

learning in which the outcome is a numeric value
rather than a category.

e Learning is supervised
— Process is being provided with target value

e Measure success on test data
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Numeric prediction

e A version of the weather data in which what is to be
predicted is the time (in minutes) to play

Outlook Temperature Humidity Windy Play time (min.)
sunny 8b 8b false b
sunny 80 90 true 0
overcast 83 86 false b5
rainy 10 96 false 40
rainy 68 80 false 65
rainy 65 70 true 45
overcast 64 65 true 60
sunny 12 95 false 0
sunny 69 70 false 70
rainy 75 80 false 45
sunny 75 10 true b0
overcast 12 90 true 55
overcast 81 75 false 75
rainy n 91 true 10
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Numeric prediction

e To find the important attributes and how they
relate to the numeric outcome is more important
than predicting value for new instances.
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Numeric prediction

e Representing numeric prediction:

— Linear regression equation: an equation to predicts
a numeric quantity

— Regression tree: a decision tree where each leaf
predicts a numeric quantity

¢ Predicted value is average value of training instances that
reach the leaf

— Model tree: a regression tree with linear regression
models at the leaf nodes
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Linear regression equation

e Linear regression equation for CPU data

PRP =

-56.1

+0.049 MYCT

+0.015 MMIN

+0.006 MMAX

+0.630 CACH

-0.270 CHMIN
+1.46 CHMAX

Data Mining Functionalities




Regression tree

e Regression tree for the CPU data

= 8.5
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Regression tree

e We calculate the average of the absolute values
of the errors between the predicted and the
actual CPU performance measures,

e It turns out to be significantly less for the tree
than for the regression equation.
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Model tree

e Model tree for the CPU data

= 28000

> 28000
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1M1 PRP=8.2%+0.004 MMAX+2.77 CHMIN

LMZ PRP=20.3+0.004 MMIN-3.9% CHMIN
+0.946 CHMAX

1M3 PRP=:8.1+0.012 MMIN

1M4 PRP=19.5+0.002 MMAX+0.698 CACH
+0.969 CHMAX

LM5 PRP=285-1.46 MYCT+1.02Z CACH
-9.39 CHMIN

LMs6 PRP=-65.8+0.03 MMIN-2.94 CHMIN

+4.98 CHMAX
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Cluster Analysis

Data Mining Functionalities




Cluster Analysis

e Clustering
— grouping similar instances into clusters

e Clustering is unsupervised
— The class of an example is not known

e Example:

— a version of the iris data in which the type of iris is
omitted

— Then it is likely that the 150 instances fall into natural
clusters corresponding to the three iris types.
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Iris data as a clustering problem

Sepal length Sepal width Petal length Petal width
(cm) (cm) (cm) (cm)
1 5.1 3.5 0.2
2 4.9 3.0 0.2
3 4.1 3.2 0.2
4 4.6 3.1 : 0.2
) 5.0 3.6 1.4 0.2
51 1.0 3.2 4.7 14
52 6.4 3.2 4.5 15
53 6.9 3.1 4.9 15
54 5.b 2.3 4.0 1.3
b5 6.5 2.8 4.6 1.5
101 6.3 3.3 6.0 2.5
102 5.8 2.1 5.1 19
103 1.1 3.0 5.9 2.1
104 6.3 2.9 5.6 18
105 6.5 3.0 5.8 2.2
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Cluster Analysis

e A 2-D plot of customer data with respect to customer locations in a city,

center” is marked with a “+”.

showing three data clusters. Each cluster ©
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Clustering

e Clustering may be followed by a second step of
classification learning in which rules are learned
that give an intelligible description of how new
instances should be placed into the clusters.
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Representing clusters

e The output takes the form of a diagram that shows
how the instances fall into clusters.

e Different cases:

— Simple 2D representation: involves associating a
cluster number with each instance

— Venn diagram: allow one instance to belong to more
than one cluster

— Probabilistic assignment: associate instances with
clusters probabilistically

— Dendrogram: produces a hierarchical structure of
clusters (dendron is the Greek word for tree)
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Representing clusters

Simple 2D Venn
representation diagram
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Representing clusters

Probabilistic
assignment
1 2 3

a 0.4 0.1 0.5
b 0.1 0.8 0.1
C 0.3 0.3 0.4
d 0.1 0.1 0.8
e 0.4 0.2 0.4
f 0.1 0.4 0.5
g 0.7 0.2 0.1
h 0.5 0.4 0.1

Dendrogram
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Clustering

e Examples of clustering algorithm:
— k-Means algorithm
— k-medoids algorithm
— AGNES (AGglomerative NESting)
— DIANA (Dlvisive ANAlysis)

— BIRCH (Balanced lterative Reducing and Clustering
Using Hierarchies)
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Interesting Patterns
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Interesting Patterns

e Data mining may generate thousands of patterns:
Not all of them are interesting

e What makes a pattern interesting?
1. Easily understood by humans,

2. Valid on new or test data with some degree of
certainty

3. Potentially useful
Novel

5. Validates some hypothesis that a user seeks to
confirm

B
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Interesting Patterns

e ODbjective vs. subjective interestingness
measures

— Objective: based on statistics and structures of
patterns, e.g., support, confidence, etc.

— Subjective: based on user’s belief in the data, e.g.,
unexpectedness, novelty, actionabllity, etc.
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The end
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