
Data Mining
Part 3. Associations Rules

3.2 Efficient Frequent Itemset Mining

Efficient Frequent Itemset Mining Methods

3.2 Efficient Frequent Itemset Mining
Methods

Fall 2009

Instructor: Dr. Masoud Yaghini

Outline

� Apriori Algorithm

� Generating Association Rules from Frequent

Itemsets

� FP-growth Algorithm

� References

Efficient Frequent Itemset Mining Methods

� References

Apriori Algorithm

Efficient Frequent Itemset Mining Methods

Apriori Algorithm

� Complete search approach:

– List all possible itemsets M = 2d - 1

– Count the support of each itemset by scanning the

database

– Eliminate itemsets that fail the min_sup

⇒

Efficient Frequent Itemset Mining Methods

⇒Computationally prohibitive!

� Reduce the number of candidates (M)

– Use pruning techniques to reduce M

– e.g. Apriori algorithm

Apriori Algorithm

� Finding frequent itemsets using candidate

generation

� Proposed by R. Agrawal and R. Srikant in 1994

for mining frequent itemsets for Boolean

association rules.

Efficient Frequent Itemset Mining Methods

� The name of the algorithm is based on the fact

that the algorithm uses prior knowledge of

frequent itemset properties.

� Apriori employs an iterative approach, where k-

itemsets are used to explore (k+1)-itemsets.

Apriori Algorithm

� Let k=1

� Scan DB once to get frequent k-itemset

� Repeat until no new frequent or candidate itemsets are

identified

– Generate length (k+1) candidate itemsets from length k frequent
itemsets

Efficient Frequent Itemset Mining Methods

itemsets

– Prune candidate itemsets containing subsets of length k that are
infrequent

– Scan DB to count the support of each candidate

– Eliminate candidates that are infrequent, leaving only those that
are frequent

Apriori Algorithm

� Apriori property:

– All nonempty subsets of a frequent itemset must also

be frequent.

� Apriori pruning principle:

– If there is any itemset which is infrequent, its superset

Efficient Frequent Itemset Mining Methods

is not frequent either and it should not be generated

as a candidate

Apriori Principle

Efficient Frequent Itemset Mining Methods

Apriori Principle

Efficient Frequent Itemset Mining Methods

Example: Apriori Algorithm

� Transactional data for

an AllElectronics

� The minimum support

count required is 2,

min_sup = 2.

Efficient Frequent Itemset Mining Methods

Example: Apriori Algorithm

� Step 1:

– generate a candidate set of 1-itemsets, C1.

– scans all of the transactions in order to count the

number of occurrences of each item.

Efficient Frequent Itemset Mining Methods

Example: Apriori Algorithm

� Step 2:

– Determine the set of frequent 1-itemsets, L1.

– all of the candidates in C1 satisfy minimum support.

Efficient Frequent Itemset Mining Methods

Example: Apriori Algorithm

� Step 3:

– generate a candidate set of 2-itemsets, C2

Efficient Frequent Itemset Mining Methods

Example: Apriori Algorithm

� Step 4:

– scans all of the transactions in order to count the

number of occurrences of each item inC2.

Efficient Frequent Itemset Mining Methods

Example: Apriori Algorithm

� Step 5:

– Determine the set of frequent 2-itemsets, L2.

Efficient Frequent Itemset Mining Methods

Example: Apriori Algorithm

� Step 6: generate a candidate set of 3-itemsets, C3

� Join Lk-1 p with Lk-1q, as follows:

insert into Ck

select p.item1, p.item2, . . . , p.itemk-1, q.itemk-1

from Lk-1 p, Lk-1q

where p.item1 = q.item1, . . . p.itemk-2 = q.itemk-2, p.itemk-1

Efficient Frequent Itemset Mining Methods

where p.item1 = q.item1, . . . p.itemk-2 = q.itemk-2, p.itemk-1

< q.itemk-1

� Generate all (k-1)-subsets from the candidate itemsets in

Ck and prune all candidate itemsets from Ck where some

(k-1)-subset of the candidate itemset is not in the frequent

itemset Lk-1

Example: Apriori Algorithm

� Join L2 p with L2q, as follows:

insert into C3

select p.item1, p.item2, q.item2

from L2 p, L2 q

where p.item1 = q.item1, p.item2 < q.item2

Efficient Frequent Itemset Mining Methods

Example: Apriori Algorithm

� Prune using the Apriori property: All nonempty subsets of a frequent
itemset must also be frequent. Do any of the candidates have a
subset that is not frequent?

Efficient Frequent Itemset Mining Methods

Example: Apriori Algorithm

� Step 6: (cont.)

– The resulting pruned version of C3

Efficient Frequent Itemset Mining Methods

The Apriori Algorithm

� Step 7:

– scans all of the transactions in order to count the

number of occurrences of each item inC3.

Efficient Frequent Itemset Mining Methods

The Apriori Algorithm

� Step 8:

– Determine the set of frequent 3-itemsets, L3.

Efficient Frequent Itemset Mining Methods

The Apriori Algorithm

� Step 9:

– Generate a candidate set of 4-itemsets, C4.

– Although the join results in {{I1, I2, I3, I5}}, this itemset

is pruned because its subset {{I2, I3, I5}} is not

frequent.

– Thus, C4 = «, and the algorithm terminates, having

Efficient Frequent Itemset Mining Methods

– Thus, C4 = «, and the algorithm terminates, having

found all of the frequent itemsets.

The Apriori Algorithm

� Pseudo-code:

Ck: Candidate itemset of size k

Lk : frequent itemset of size k

L1 = {frequent items};

for (k = 1; Lk !=∅; k++) do begin

Ck+1 = candidates generated from Lk;

Efficient Frequent Itemset Mining Methods

Ck+1 = candidates generated from Lk;

for each transaction t in database do

increment the count of all candidates in C
k+1

that are contained in t

Lk+1 = candidates in Ck+1 with min_support

end

return ∪k Lk;

Important Details of Apriori

� How to generate candidates?

– Step 1: self-joining Lk

– Step 2: pruning

� Example of Candidate-generation

– L3={abc, abd, acd, ace, bcd}

– Self-joining: L3*L3

Efficient Frequent Itemset Mining Methods

– Self-joining: L3*L3

� abcd from abc and abd

� acde from acd and ace

– Pruning:

� acde is removed because ade is not in L3

– C4={abcd}

Generating Association Rules

from Frequent Itemsets

Efficient Frequent Itemset Mining Methods

from Frequent Itemsets

Generating Association Rules

� Once the frequent itemsets from transactions in

a database D have been found, it is

straightforward to generate strong association

rules from them

� Where strong association rules satisfy both

Efficient Frequent Itemset Mining Methods

minimum support and minimum confidence.

� Confidence:

Generating Association Rules

� Association rules can be generated as follows:

– For each frequent itemset l, generate all nonempty

subsets of l.

– For every nonempty subset s of l, output the rule

Efficient Frequent Itemset Mining Methods

– where min_conf is the minimum confidence

threshold.

� Because the rules are generated from frequent itemsets,

each one automatically satisfies minimum support.

Example: Generating Association Rules

� Suppose the data contain the frequent itemset

l = {I1, I2, I5}.

� What are the association rules that can be

generated from l?

� The nonempty subsets of l are

Efficient Frequent Itemset Mining Methods

� The nonempty subsets of l are

– {I1, I2}, {I1, I5}, {I2, I5}, {I1}, {I2}, and {I5}.

Example: Generating Association Rules

� The resulting association rules are as shown

below, each listed with its confidence:

Efficient Frequent Itemset Mining Methods

� If the minimum confidence threshold is, say, 70%,

then only the second, third, and last rules above

are output,

Factors Affecting Complexity

� Choice of minimum support threshold
– lowering support threshold results in more frequent itemsets

– this may increase number of candidates and max length of
frequent itemsets

� Dimensionality (number of items) of the data set
– more space is needed to store support count of each item

– if number of frequent items also increases, both computation and
I/O costs may also increase

Efficient Frequent Itemset Mining Methods

I/O costs may also increase

� Size of database
– since Apriori makes multiple passes, run time of algorithm may

increase with number of transactions

� Average transaction width
– transaction width increases with denser data sets

– This may increase max length of frequent itemsets and traversals
of hash tree (number of subsets in a transaction increases with its
width)

FP-growth Algorithm

Efficient Frequent Itemset Mining Methods

Bottleneck of Apriori Algorithm

� Apriori has two shortcoming:

– Generating a huge number of candidate sets

– Scanning lots of candidates

� To find frequent itemset i1, I,2…,i100

– # of scans: 100

Efficient Frequent Itemset Mining Methods

– # of scans: 100

– # of Candidates: (100
1) + (100

2) + … + (1
1

0
0

0
0) = 2100-1 =

1.27*1030 !

� Bottleneck: candidate-generation-and-test

� Can we avoid candidate generation?

– An interesting method in this attempt is called

frequent-pattern growth

FP-growth

� FP-growth

– finding frequent itemsets without candidate generation

– adopts a divide-and-conquer strategy.

� First, FP-growth compresses the database representing

frequent items into a frequent-pattern tree, or FP-tree,

Efficient Frequent Itemset Mining Methods

– which retains the itemset association information.

� Then, It divides the compressed database into a set of

conditional databases (a special kind of projected

database),

– each associated with one frequent item or “pattern

fragment,” and mines each such database separately.

Example: FP-growth

� Transactional data for

an AllElectronics

� The minimum support

count required is 2,

min_sup = 2.

Efficient Frequent Itemset Mining Methods

Example: FP-growth

1. Scan DB once, find frequent 1-itemset (same as

Apriori)

2. Sort frequent items in frequency descending

order, denoted L.

– L = {{I2: 7}, {I1: 6}, {I3: 6}, {I4: 2}, {I5: 2}}.

Efficient Frequent Itemset Mining Methods

– L = {{I2: 7}, {I1: 6}, {I3: 6}, {I4: 2}, {I5: 2}}.

3. Construct FP-tree

Constructing FP-tree

� Constructing FP-tree

– First, create the root of the tree, labeled with “null.”

– Scan database D a second time.

– The items in each transaction are processed in L

order, and a branch is created for each transaction.

Efficient Frequent Itemset Mining Methods

Constructing FP-tree

� Scanning the transactions:

– The first transaction,

� “T100: I1, I2, I5,” which contains three items (I2, I1, I5 in L

order), leads to the construction of the first branch of the tree
with three nodes, (I2: 1), (I1:1), and (I5: 1), where I2 is linked
as a child of the root, I1 is linked to I2, and I5 is linked to I1.

– The second transaction,

Efficient Frequent Itemset Mining Methods

– The second transaction,

� T200, contains the items I2 and I4 in L order, which would
result in a branch where I2 is linked to the root and I4 is linked
to I2.

� This branch would share a common prefix, I2, with the
existing path for T100.

� We increment the count of the I2 node by 1, and create a new
node, (I4: 1), which is linked as a child of (I2: 2).

Constructing FP-tree

� When considering the branch to be added for a

transaction, the count of each node along a

common prefix is incremented by 1, and nodes

for the items following the prefix are created and

linked accordingly.

Efficient Frequent Itemset Mining Methods

� To facilitate tree traversal, an item header table is

built so that each item points to its occurrences in

the tree via a chain of node-links.

FP-tree

Efficient Frequent Itemset Mining Methods

Benefits of the FP-tree Structure

� Benefits of the FP-tree Structure:

– Completeness

� Preserve complete information for frequent pattern mining

� Never break a long pattern of any transaction

– Compactness

� Reduce irrelevant info—infrequent items are gone

Efficient Frequent Itemset Mining Methods

� Reduce irrelevant info—infrequent items are gone

� Items in frequency descending order: the more frequently
occurring, the more likely to be shared

� Never be larger than the original database (not count node-
links and the count field)

Mining FP-tree

� Now we should mine the FP-tree.

– Start from each frequent length-1 pattern as an initial

suffix pattern,

– construct its conditional pattern base (which

consists of the set of prefix paths in the FP-tree co-

occurring with the suffix pattern),

Efficient Frequent Itemset Mining Methods

occurring with the suffix pattern),

– then construct its conditional FP-tree, and perform

mining recursively on such a tree.

– The pattern growth is achieved by the concatenation

of the suffix pattern with the frequent patterns

generated from a conditional FP-tree.

Example: Mining FP-tree

� the paths in which I5 occurs

Efficient Frequent Itemset Mining Methods

Example: Mining FP-tree

� First consider I5, which is the last item in L

– I5 occurs in two branches of the FP-tree, the paths

(I2, I1, I5: 1) and (I2, I1, I3, I5: 1).

– Conditional pattern base

– Considering I5 as a suffix, its corresponding two prefix paths
are (I2, I1: 1) and (I2, I1, I3: 1)

Efficient Frequent Itemset Mining Methods

are (I2, I1: 1) and (I2, I1, I3: 1)

– Conditional FP-tree

– Its conditional FP-tree contains only a single path, (I2: 2, I1:
2); I3 is not included because its support count of 1 is less
than the minimum support count 2.

– The single path generates all the combinations of

frequent patterns:

� {I2, I5: 2}, {I1, I5: 2}, {I2, I1, I5: 2}.

Mining FP-tree

� For I4,

– its two prefix paths form the conditional pattern base,

{{I2, I1: 1}, {I2: 1}},

– which generates a single-node conditional FP-tree,

(I2: 2),

– and derives one frequent pattern, {I2, I4: 2}.

Efficient Frequent Itemset Mining Methods

– and derives one frequent pattern, {I2, I4: 2}.

Mining FP-tree

� For I3

– conditional pattern base is {{I2, I1: 2}, {I2: 2}, {I1: 2}}.

– conditional FP-tree has two branches, (I2: 4, I1: 2)

and (I1: 2), as shown in the following Figure

– which generates the set of patterns:

Efficient Frequent Itemset Mining Methods

{{I2, I3: 4}, {I1, I3: 4}, {I2, I1, I3: 2}}.

Mining FP-tree

� For I1

– conditional pattern base is {{I2: 4}},

– whose FP-tree contains only one node, (I2: 4),

– which generates one frequent pattern, {I2, I1: 4}.

Efficient Frequent Itemset Mining Methods

Mining FP-tree

� Summarization of the FP-tree:

Efficient Frequent Itemset Mining Methods

Why Is FP-Growth the Winner?

� Divide-and-conquer:

– decompose both the mining task and DB according to

the frequent patterns obtained so far

– leads to focused search of smaller databases

� Other factors

Efficient Frequent Itemset Mining Methods

– no candidate generation, no candidate test

– compressed database: FP-tree structure

– no repeated scan of entire database

– basic ops—counting local freq items and building sub

FP-tree, no pattern search and matching

References

Efficient Frequent Itemset Mining Methods

References

� J. Han, M. Kamber, Data Mining: Concepts and

Techniques, Elsevier Inc. (2006). (Chapter 5)

Efficient Frequent Itemset Mining Methods

The end

Efficient Frequent Itemset Mining Methods

