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Data Structures

� Clustering algorithms typically operate on either of the 

following two data structures: 

– Data matrix

– Dissimilarity matrix
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Data matrix

Types of Data in Cluster Analysis

� This represents n objects, such as persons, with p variables

(measurements or attributes), such as age, height, weight, 

gender, and so on.

� The structure is in the form of a relational table, or n-by-p 

matrix (n objects p variables)



Dissimilarity matrix
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� It is often represented by an n-by-n where d(i, j) is the measured 

difference or dissimilarity between objects i and j.

� In general, d(i, j) is a nonnegative number that is

– close to 0 when objects i and j are highly similar or “near” each other

– becomes larger the more they differ

� Where d(i, j)=d( j, i), and d(i, i)=0



Type of data in clustering analysis

� Dissimilarity can be computed for

– Interval-scaled (numeric) variables

– Binary variables

– Categorical (nominal) variables

– Ordinal variables
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– Ratio variables

– Mixed types variables 



Interval-Valued (Numeric) Variables
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Interval-valued variables

� Interval-scaled (numeric) variables are continuous 

measurements of a roughly linear scale.

� Examples

– weight and height, latitude and longitude coordinates (e.g., 

when clustering houses), and weather temperature.

The measurement unit used can affect the clustering 
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� The measurement unit used can affect the clustering 

analysis 

– For example, changing measurement units from meters to 

inches for height, or from kilograms to pounds for weight, 

may lead to a very different clustering structure.



Data Standardization

� Expressing a variable in smaller units will lead to a 

larger range for that variable, and thus a larger effect 

on the resulting clustering structure.

� To help avoid dependence on the choice of 

measurement units, the data should be standardized. 
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� Standardizing measurements attempts to give all 

variables an equal weight.

� To standardize measurements, one choice is to convert 

the original measurements to unitless variables.



Data Standardization

� Standardize data

– Calculate the mean absolute deviation:

– where .)...
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– Calculate the standardized measurement (z-score)
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Data Standardization

� Using mean absolute deviation is more robust to 

outliers than using standard deviation 

� When computing the mean absolute deviation, the 

deviations from the mean are not squared; hence, the 

effect of outliers is somewhat reduced.
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� Standardization may or may not be useful in a 

particular application. 

– Thus the choice of whether and how to perform 

standardization should be left to the user. 

� Methods of standardization are also discussed under 

normalization techniques for data preprocessing.



Dissimilarity Between Objects

� Distances are normally used to measure the similarity

or dissimilarity between two data objects described by 

interval-scaled variables
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Dissimilarity Between Objects

� Euclidean distance: the most popular distance measure

– where  i = (xi1, xi2, …, xip) and j = (xj1, xj2, …, xjp) are two p-

dimensional data objects
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� Manhattan (city block) distance: another well-known 

metric
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Dissimilarity Between Objects

� Example: Let x1 = (1, 2) and x2 = (3, 5) represent two 

objects
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Dissimilarity Between Objects

� Properties of Euclidean and Manhattan distances:

– d(i,j) ≥ 0 : Distance is a nonnegative number.

– d(i,i) = 0 : The distance of an object to itself is 0.

– d(i,j) = d(j,i) : Distance is a symmetric function.

– d(i,j) ≤ d(i,k) + d(k,j) : Going directly from object i to 
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– d(i,j) ≤ d(i,k) + d(k,j) : Going directly from object i to 

object j in space is no more than making a detour over any 

other object h (triangular inequality).



Dissimilarity Between Objects

� Minkowski distance: a generalization of both 

Euclidean distance and Manhattan distance

– Where q is a positive integer
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– Where q is a positive integer

– It represents the Manhattan distance when q = 1 and 

Euclidean distance when q = 2



Binary Variables
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Binary Variables

� A binary variable has only two states: 0 or 1, where 0 

means that the variable is absent, and 1 means that it is 

present. 

� Given the variable smoker describing a patient, 

– 1 indicates that the patient smokes
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– 0 indicates that the patient does not. 

� Treating binary variables as if they are interval-scaled 

can lead to misleading clustering results. 

� Therefore, methods specific to binary data are 

necessary for computing dissimilarities.



Binary Variables

� One approach involves computing a dissimilarity 

matrix from the given binary data. 

� If all binary variables are thought of as having the 

same weight, we have the 2-by-2 contingency table
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Contingency Table

� where 
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� where 

– q is the number of variables that equal 1 for both objects i and j, 

– r is the number of variables that equal 1 for object i but that are 0 for 

object j, 

– s is the number of variables that equal 0 for object i but equal 1 for 

object j, and 

– t is the number of variables that equal 0 for both objects i and j.

– p is the total number of variables, p = q+r+s+t.



Symmetric Binary Dissimilarity

� A binary variable is symmetric if both of its states are 

equally valuable and carry the same weight

– Example: the attribute gender having the states male and 

female. 

� Dissimilarity that is based on symmetric binary 

variables is called symmetric binary dissimilarity. 
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variables is called symmetric binary dissimilarity. 

� The dissimilarity between objects i and j:



Asymmetric Binary Dissimilarity

� A binary variable is asymmetric if the outcomes of the 

states are not equally important, 

– Example: the positive and negative outcomes of a HIV test.

– we shall code the most important outcome, which is usually 

the rarest one, by 1 (HIV positive)

� Given two asymmetric binary variables, the agreement of two 
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� Given two asymmetric binary variables, the agreement of two 

1s (a positive match) is then considered more significant than 

that of two 0s (a negative match). 

� Therefore, such binary variables are often considered “monary” 

(as if having one state). 

� The dissimilarity based on such variables is called asymmetric 

binary dissimilarity



Asymmetric Binary Dissimilarity

� In asymmetric binary dissimilarity the number of 

negative matches, t, is considered unimportant and 

thus is ignored in the computation:
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Asymmetric Binary Similarity

� The asymmetric binary similarity between the 

objects i and j, or sim(i, j), can be computed as
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� The coefficient sim(i, j) is called the Jaccard

coefficient

� When both symmetric and asymmetric binary 

variables occur in the same data set, the mixed 

variables approach can be applied (described later) 



Example: Dissimilarity Between Binary Variables

� Suppose that a patient record table contains the attributes :

– name: an object identifier

– gender: a symmetric attribute

– fever, cough, test-1, test-2, test-3, test-4: the asymmetric 

attributes
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Example: Dissimilarity Between Binary Variables

� For asymmetric attribute values

– let the values Y (yes) and P (positive) be set to1, and 

– the value N (no or negative) be set to 0. 

� Suppose that the distance between objects (patients) is 

computed based only on the asymmetric variables.

� The distance between each pair of the three patients, Jack, 
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� The distance between each pair of the three patients, Jack, 

Mary, and Jim, is



Example: Dissimilarity Between Binary Variables

� These measurements suggest that 

– Mary and Jim are unlikely to have a similar disease because 

they have the highest dissimilarity value among the three 

pairs. 

– Of the three patients, Jack and Mary are the most likely to 

have a similar disease.
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have a similar disease.



Categorical Variables
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Categorical Variables

� A categorical (nominal) variable is a generalization of 

the binary variable in that it can take on more than two 

states.

– Example: map_color is a categorical variable that may have 

five states: red, yellow, green, pink, and blue.

� The states can be denoted by letters, symbols, or a set 
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� The states can be denoted by letters, symbols, or a set 

of integers. 



Dissimilarity between categorical variables

� Method 1: Simple matching

– The dissimilarity between two objects i and j can be 

computed based on the ratio of mismatches:
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– m is the number of matches (i.e., the number of variables 

for which i and j are in the same state)

– p is the total number of variables.

� Weights can be assigned to increase the effect of m or 

to assign greater weight to the matches in variables 

having a larger number of states.



Example: Dissimilarity between categorical variables

� Suppose that we have the sample data 

– where test-1 is categorical. 
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Categorical Variables

� Let’s compute the dissimilarity the matrix
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� Since here we have one categorical variable, test-1, we set p = 1 

in 



Categorical Variables

� So that d(i, j) evaluates to 0 if objects i and j match, 

and 1 if the objects differ. Thus,
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Categorical Variables

� Method 2: use a large number of binary variables

– creating a new asymmetric binary variable for each of the 

nominal states

– For an object with a given state value, the binary variable 

representing that state is set to 1, while the remaining 

binary variables are set to 0. 
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binary variables are set to 0. 

– For example, to encode the categorical variable map _color, 

a binary variable can be created for each of the five colors 

listed above. 

– For an object having the color yellow, the yellow variable is 

set to 1, while the remaining four variables are set to 0.



Ordinal Variables
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Ordinal Variables

� A discrete ordinal variable resembles a categorical 

variable, except that the M states of the ordinal value 

are ordered in a meaningful sequence.

– Example: professional ranks are often enumerated in a 

sequential order, such as assistant, associate, and full for 

professors.
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professors.

� Ordinal variables may also be obtained from the discretization

of interval-scaled quantities by splitting the value range into a 

finite number of classes.

� The values of an ordinal variable can be mapped to ranks. 

– Example: suppose that an ordinal variable f has Mf states. 

– These ordered states define the ranking 1, … , Mf .



Ordinal Variables

� Suppose that f is a variable from a set of ordinal 

variables describing n objects. 

� The dissimilarity computation with respect to f

involves the following steps:

� Step 1:
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– The value of f for the ith object is xif , and f has Mf

ordered states, representing the ranking 1, … , Mf. 

– Replace each xif by its corresponding rank:



Ordinal Variables

� Step 2:

– Since each ordinal variable can have a different number of 

states, it is often necessary to map the range of each 

variable onto [0.0, 1.0] so that each variable has equal 

weight. 

– This can be achieved by replacing the rank rif of the ith
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– This can be achieved by replacing the rank rif of the ith

object in the f th variable by:

� Step 3:

– Dissimilarity can then be computed using any of the 

distance measures described for interval-scaled variables.



Ordinal Variables

� Example: Suppose that we have the sample data:
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� There are three states for test-2, namely fair, good, and 

excellent, that is Mf = 3. 



Example: Dissimilarity between ordinal variables

� Step 1: if we replace each value for test-2 by its rank, the four 

objects are assigned the ranks 3, 1, 2, and 3, respectively. 

� Step 2: normalizes the ranking by mapping rank 1 to 0.0, rank 2 

to 0.5, and rank 3 to 1.0. 

� Step 3: we can use, say, the Euclidean distance, which results in 

the following dissimilarity matrix:
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the following dissimilarity matrix:



Variables of Mixed Types
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Variables of Mixed Types

� A database may contain different types of variables

– interval-scaled, symmetric binary, asymmetric binary, 

nominal, and ordinal

� We can combine the different variables into a single 

dissimilarity matrix, bringing all of the meaningful 

variables onto a common scale of the interval [0.0, 
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variables onto a common scale of the interval [0.0, 

1.0].



Variables of Mixed Types

� Suppose that the data set contains p variables of mixed type. 

The dissimilarity d(i, j) between objects i and j is defined as

�
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�

– if either (1) xif or xjf  is missing (i.e., there is no 

measurement of variable f for object i or object j), 

– or (2) xif = xjf = 0 and variable f is asymmetric binary; 

� otherwise



Variables of Mixed Types

� The contribution of variable f to the dissimilarity between i and 

j, that is, dij
(f)

� If f is interval-based: 

– use the normalized distance so that the values map to the 

interval [0.0,1.0].

� If f is binary or categorical: 
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� If f is binary or categorical: 

– dij
(f) = 0  if xif = xjf , or dij

(f) = 1 otherwise

� If f is ordinal: 

– compute ranks rif and  



Example: Dissimilarity between variables of mixed type

� The sample data:
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Example: Dissimilarity between variables of mixed type

� For test-1 (which is categorical) is the same as outlined above 

� For test-2 (which is ordinal) is the same as outlined above

� We can now calculate the dissimilarity matrices for the two 

variables.

0.00 
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Example: Dissimilarity between variables of mixed type

� If we go back and look at the data, we can intuitively 

guess that objects 1 and 4 are the most similar, based 

on their values for test-1 and test-2. 

� This is confirmed by the dissimilarity matrix, where 

d(4, 1) is the lowest value for any pair of different 

objects.
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objects.

� Similarly, the matrix indicates that objects 1 and 2 and 

object 2 and 4 are the least similar.
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The end
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