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Introduction

� A hierarchical clustering method works by grouping 

data objects into a tree of clusters.

� Types of hierarchical clustering methods:

– Agglomerative: the hierarchical decomposition is formed 

in a bottom-up (merging) fashion. 

– Divisive: the hierarchical decomposition is formed in a top-
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– Divisive: the hierarchical decomposition is formed in a top-

down (splitting) fashion. 



Introduction

� Agglomerative hierarchical clustering

– This bottom-up strategy starts by placing each object in its 

own cluster and then merges these atomic clusters into 

larger and larger clusters, until all of the objects are in a 

single cluster or until certain termination conditions are 

satisfied.
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satisfied.

– Most hierarchical clustering methods belong to this 

category.

– They differ only in their definition of intercluster similarity.



Introduction

� Divisive hierarchical clustering

– This top-down strategy starts with all objects in one cluster. 

– It subdivides the cluster into smaller and smaller pieces, 

until each object forms a cluster on its own or until it 

satisfies certain termination conditions, 

– Termination conditions can be 
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– Termination conditions can be 

� a desired number of clusters is obtained or 

� the diameter of each cluster is within a certain threshold.



Example

� Example: Agglomerative versus divisive 

hierarchical clustering

– the application of AGNES (AGglomerative NESting), an 

agglomerative hierarchical clustering method,

– and DIANA (DIvisive ANAlysis), a divisive hierarchical 

clustering method, to a data set of five objects, {a, b, c, d, 
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clustering method, to a data set of five objects, {a, b, c, d, 

e}.



Example

� Agglomerative and divisive hierarchical clustering on 

data objects {a, b, c, d, e}.
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Dendrogram

� Dendrogram

– A tree structure which is commonly used to represent the 

process of hierarchical clustering. 

– It shows how objects are grouped together step by step.
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Dendrogram

� Dendrogram representation for hierarchical clustering 

of data objects {a, b, c, d, e}.
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Measures for Distance Between Clusters

� Common measures for distance between clusters are as 

follows:

– Minimum distance

– Maximum distance

– Mean distance

Average distance
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– Average distance



Measures for Distance Between Clusters

� Notation

– |p−p΄| : is the distance between two objects or points, p and 

p΄

– mi is the mean for cluster, Ci

– ni is the number of objects in Ci

– m is the mean for cluster, C
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– mj is the mean for cluster, Cj



Measures for Distance Between Clusters

� Minimum distance

– When an algorithm uses the minimum distance, it is 

sometimes called a nearest-neighbor clustering 

algorithm.
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– If the clustering process is terminated when the distance 

between nearest clusters exceeds an arbitrary threshold, it 

is called a single-linkage algorithm.



Measures for Distance Between Clusters

� Maximum distance

– When an algorithm uses the maximum distance, it is 

sometimes called a farthest-neighbor clustering 

algorithm. 
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algorithm. 

– If the clustering process is terminated when the maximum 

distance between nearest clusters exceeds an arbitrary 

threshold, it is called a complete-linkage algorithm. 

– Farthest-neighbor algorithms tend to minimize the increase 

in diameter of the clusters at each iteration as little as 

possible.



Measures for Distance Between Clusters

� Mean distance

– The minimum and maximum measures tend to be overly 

sensitive to outliers or noisy data. 

– The use of mean or average distance is a compromise 
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– The use of mean or average distance is a compromise 

between the minimum and maximum distances and 

overcomes the outlier sensitivity problem. 



Measures for Distance Between Clusters

� Average distance

– Whereas the mean distance is the simplest to compute, the 
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– Whereas the mean distance is the simplest to compute, the 

average distance is advantageous in that it can handle 

categoric as well as numeric data.

– The computation of the mean vector for categoric data can 

be difficult or impossible to define.



The Difficulties with Hierarchical Clustering

� The quality of a pure hierarchical clustering method 

suffers from its inability to perform adjustment once a 

merge or split decision has been executed. 

� That is, if a particular merge or split decision later 

turns out to have been a poor choice, the method 

cannot backtrack and correct it. 
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cannot backtrack and correct it. 

� Recent studies have emphasized the integration of 

hierarchical agglomeration with iterative relocation 

methods.



The Difficulties with Hierarchical Clustering

� Three such methods are introduced in this chapter, 

including:

– BIRCH, 

� begins by partitioning objects hierarchically using tree structures, 

where the leaf or low-level nonleaf nodes can be viewed as 

“microclusters” depending on the scale of resolution. 
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� It then applies other clustering algorithms to perform macroclustering

on the microclusters. 

– ROCK

� Merges clusters based on their interconnectivity. 

– Chameleon, 

� Explores dynamic modeling in hierarchical clustering.



BIRCH Algorithm
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BIRCH Algorithm

� BIRCH: Balanced Iterative Reducing and 

Clustering Using Hierarchies

– BIRCH is designed for clustering a large amount of 

numerical data 

– It integrates the hierarchical clustering (at the initial 

microclustering stage) and other clustering methods such 
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microclustering stage) and other clustering methods such 

as iterative partitioning (at the later macroclustering

stage). 

– It overcomes the two difficulties of agglomerative 

clustering methods: 

� (1) scalability and 

� (2) the inability to undo what was done in the previous step.



BIRCH Algorithm

� BIRCH introduces two concepts: 

– Clustering Feature (CF)

– Clustering feature tree (CF tree)

� They are used to summarize cluster representations. 

� These structures help the clustering method achieve 
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� These structures help the clustering method achieve 

good speed and scalability in large databases and also 

make it effective for incremental and dynamic 

clustering of incoming objects.



BIRCH Algorithm

� Given n d-dimensional data objects or points in a 

cluster, we can define the centroid x0, radius R, and 

diameter D of the cluster as follows:
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� Where R is the average distance from member objects to the 

centroid, and D is the average pairwise distance within a 

cluster. 

� Both R and D reflect the tightness of the cluster around the 

centroid.



BIRCH Algorithm

� Clustering Feature (CF)

– CF is a three-dimensional vector summarizing information 

about clusters of objects. 

– Given n d-dimensional objects or points in a cluster, {xi}, 

then the CF of the cluster is defined as:

CF = ‹n, LS, SS›
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CF = ‹n, LS, SS›

– where n is the number of points in the cluster, 

– LS is the linear sum of the n points, i.e.,  

– SS is the square sum of the data points, i.e., 



BIRCH Algorithm

� Clustering features are additive. 

� For example, suppose that we have two disjoint 

clusters, C1 and C2, having the clustering features, CF1

and CF2, respectively. 

� The clustering feature for the cluster that is formed by 
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merging C1 and C2 is simply CF1 + CF2.

� Clustering features are sufficient for calculating all of 

the measurements that are needed for making 

clustering decisions in BIRCH.



BIRCH Algorithm

� Example: Clustering feature. 

– Suppose that there are three points, (2, 5), (3, 2), and (4, 3), 

in a cluster, C1. The clustering feature of C1 is: 
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– Suppose that C1is joint to a second cluster, C2, where 

CF2= ‹3, (35, 36), (417, 440)›.

– The clustering feature of a new cluster, C3, that is formed 

by merging C1and C2, is derived by adding CF1and CF2. 

That is:



BIRCH Algorithm

� A CF tree is a height-balanced tree that stores the 

clustering features for a hierarchical clustering. 
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BIRCH Algorithm

� By definition, a nonleaf node in a tree has children. 

� The nonleaf nodes store sums of the CFs of their 

children, and thus summarize clustering information 

about their children. 

� A CF tree has two parameters: 
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– Branching factor, B

� specifies the maximum number of children per nonleaf node. 

– Threshold, T

� specifies the maximum diameter of subclusters stored at the leaf 

nodes of the tree. 

� These two parameters influence the size of the 

resulting tree.



BIRCH Algorithm Phases

� The primary phases of BIRCH are:

� Phase 1: 

– BIRCH scans the database to build an initial in-memory CF 

tree

� Phase 2: 
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– BIRCH applies a (selected) clustering algorithm to cluster 

the leaf nodes of the CF tree, which removes sparse clusters 

as outliers and groups dense clusters into larger ones.



BIRCH Algorithm Phases

� Phase 1:

– the CF tree is built dynamically as objects are inserted. 

– Thus, the method is incremental.

– An object is inserted into the closest leaf entry (subcluster). 

– If the diameterc of the subcluster stored in the leaf node 

after insertion is larger than the threshold value, then the 
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after insertion is larger than the threshold value, then the 

leaf node and possibly other nodes are split. 

– After the insertion of the new object, information about it is 

passed toward the root of the tree. 

– The size of the CF tree can be changed by modifying the 

threshold. 



BIRCH Algorithm Phases

� Phase 2:

– Once the CF tree is built, any clustering algorithm, such as 

a typical partitioning algorithm, can be used with the CF 

tree in Phase 2.
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Computation Complexity of the Algorithm 

� The computation complexity of the algorithm is O(n),

– were n is the number of objects to be clustered.

� Experiments have shown the linear scalability of the 

algorithm with respect to the number of objects and 

good quality of clustering of the data. 
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Weakness of BIRCH

� However, since each node in a CF tree can hold only a 

limited number of entries due to its size, a CF tree 

node does not always correspond to what a user may 

consider a natural cluster. 

� Moreover, if the clusters are not spherical in shape, 

BIRCH does not perform well, because it uses the 
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BIRCH does not perform well, because it uses the 

notion of radius or diameter to control the boundary of 

a cluster.
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