Data Mining Part 5. Prediction

5.1 Introduction

Spring 2010

Instructor: Dr. Masoud Yaghini

Outline

- Classification vs. Numeric Prediction
- Prediction Process
- Data Preparation
- Comparing Prediction Methods
- References

- Prediction problems
 - predict future data trends
- Major types:
 - Classification
 - Numeric prediction

Classification

- a model or classifier to predict categorical labels (discrete or nominal)
- The ordering among categories has no meaning
- e.g. such as "safe" or "risky" for the loan application data
- guess whether a customer with a given profile will buy a new computer.

Numeric Prediction

- a model or predictor to predict a continuous-valued function or ordered value
- e.g. predicting how much a given customer will spend during a sale at AllElectronics
- Regression analysis is a statistical methodology that is most often used for numeric prediction

Applications

- Typical applications
 - Credit approval
 - Target marketing
 - Medical diagnosis
 - Fraud detection
 - Performance prediction
 - Manufacturing

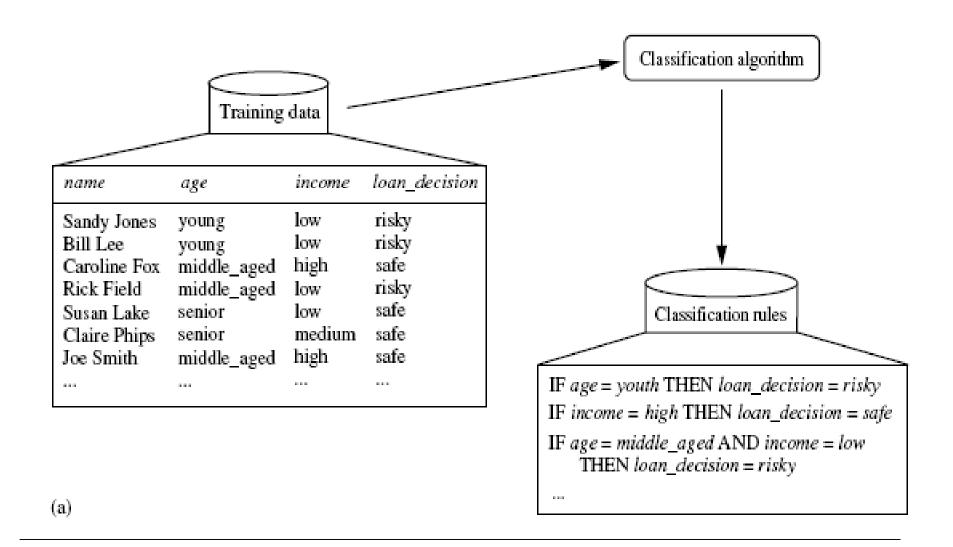
Classification

- Techniques for data classification:
 - Decision tree classifiers
 - Bayesian classifiers
 - Bayesian belief networks
 - Rule-based classifiers
 - Backpropagation (a neural network technique)
 - Support vector machines
 - K-nearest-neighbor classifiers
 - Case-based reasoning
 - Genetic algorithms

Prediction Process

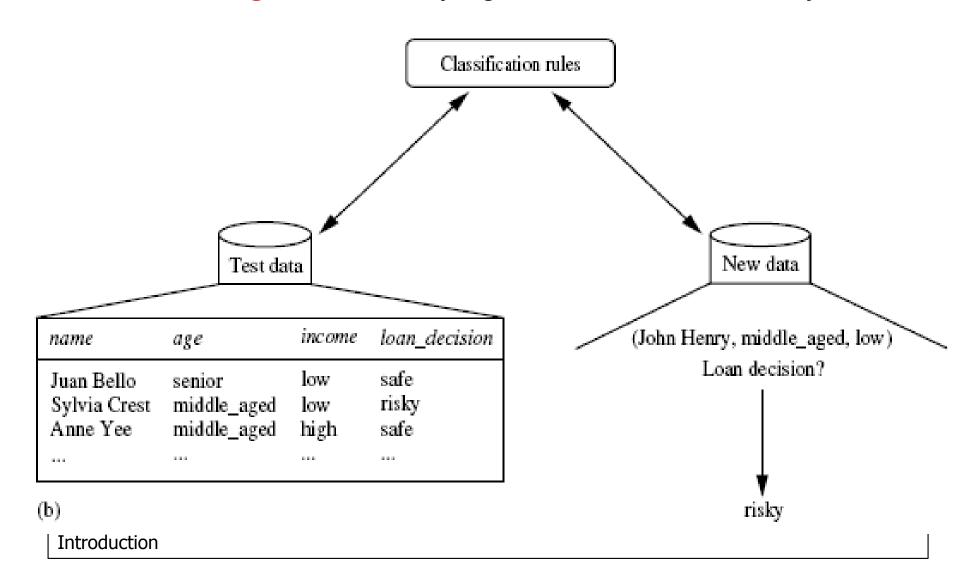
Prediction Process

- Prediction is a two-step process:
 - Learning step or model construction
 - Model usage


Model Construction

Learning step (model construction)

- A classification algorithm builds the classifier by analyzing or "learning from" a training set
- Each instance is assumed to belong to a predefined class, as determined by the class label attribute
- The set of instances used for model construction is training set
- The model is represented as classification rules, decision trees, or mathematical formula
- Data instances can be referred to as samples, examples, instances, data points, objects, or data tuples


Model Construction

Example: identify loan applications as being either safe or risky

Model Usage

Model usage: for classifying future or unknown objects

Estimate Accuracy

Estimate accuracy of the model

- The known label of test sample is compared with the classified result from the model
- Accuracy rate is the percentage of test set samples that are correctly classified by the model
- The test instances are randomly selected from the general data set
- Test set is independent of training set, otherwise over-fitting will occur
- If the accuracy is acceptable, use the model to classify new data instances whose class labels are not known

Numeric Prediction

- Numeric prediction is a two step process, similar to that of classification
- The attribute for which values are being predicted is continuous-valued (ordered) rather than categorical (discrete-valued and unordered).
 - This attribute can be referred to simply as the predicted attribute.

• Example:

- We want to predict the amount (in dollars) that would be "safe" for the bank to loan an applicant.
- We use the continuous-valued loan_amount as the predicted attribute, and build a predictor for our task.

Supervised vs. Unsupervised Learning

Supervised learning

- The class label of each training instance is known
- Learning step is also known as supervised learning
- i.e., the learning of the classifier is "supervised" in that it is told to which class each training instance belongs

Unsupervised learning (clustering)

- The class label of each training instance is not known
- The number or set of classes to be learned may not be known in advance
- the aim of establishing the existence of classes or clusters in the data

Data Preparation

Data Preparation

- The preprocessing may be applied to the data to help improve the accuracy, efficiency, and scalability of the classification process.
- The preprocessing steps:
 - Data cleaning
 - Relevance analysis
 - Data transformation

Data Cleaning

Data cleaning

- to remove or reduce noisy values
- the treatment of missing values
- Although most classification algorithms have some mechanisms for handling noisy or missing data, this step can help reduce confusion during learning.

Relevance Analysis (feature selection)

Relevance analysis:

Correlation analysis

- to detect redundant attributes
- Correlation analysis can be used to identify whether any two given attributes are statistically related.
- For example, a strong correlation between attributes A1 and A2 would suggest that one of the two could be removed from further analysis.

Attribute subset selection

- to remove irrelevant attributes
- to find a reduced set of attributes such that the resulting probability distribution of the data classes is as close as possible to the original distribution obtained using all attributes.

Data Transformation

- Data transformation
 - Normalization
 - Discretization
 - Generalization

Data Transformation

Normalization

- The normalization is used particularly when methods involving distance measurements are used in the learning step.
- The values a given attribute fall within a small specified range, such as -1.0 to 1.0, or 0.0 to 1.0.
- Normalization would prevent attributes with initially large ranges (like income) from outweighing attributes with initially smaller ranges (such as binary attributes).

Data Transformation

Discretization

 For example, numeric values for the attribute income can be generalized to discrete ranges, such as *low*, *medium*, and *high*. *Similarly*, *categorical* attributes

Generalization

- The data can also be transformed to higher-level concepts.
- Example: like street, can be generalized to higher-level concepts, like city.
- Because generalization compresses the original training data, fewer input/output operations may be involved during learning.

Comparing Prediction Methods

Comparing Prediction Methods

 Classification and prediction methods can be compared and evaluated according to the following criteria:

Accuracy

 the ability of a given classifier to correctly predict the class label of new data

Speed

- time to construct the model (training time)
- time to use the model (classification/prediction time)

Robustness

 the ability of the classifier to make correct predictions given noisy data or data with missing values.

Comparing Prediction Methods

Scalability

 The ability to construct the classifier or predictor efficiently given large amounts of data.

Interpretability

 the level of understanding and insight that is provided by the classifier.

References

References

 J. Han, M. Kamber, Data Mining: Concepts and Techniques, Elsevier Inc. (2006). (Chapter 6)

The end