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1. Introduction
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Decision Tree Induction

� Classification by Decision tree 

– the learning of decision trees from class-labeled 

training instances.

� A decision tree is a flowchart-like tree structure,  

where 

– each internal node (non-leaf node) denotes a test on 
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– each internal node (non-leaf node) denotes a test on 

an attribute

– each branch represents an outcome of the test

– each leaf node (or terminal node) holds a class label.

– The topmost node in a tree is the root node.



An example

� This example represents the concept 

buys_computer

� It predicts whether a customer at AllElectronics is 

likely to purchase a computer.
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An example: Training Dataset
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An example: A Decision Tree for “buys_computer”
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Decision Tree Induction

� How are decision trees used for classification?

– Given an instance, X, for which the associated class 

label is unknown, 

– The attribute values of the instance are tested against 

the decision tree

– A path is traced from the root to a leaf node, which 
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– A path is traced from the root to a leaf node, which 

holds the class prediction for that instance. 



Decision Tree Induction

� Advantages of decision tree

– The construction of decision tree classifiers does not 

require any domain knowledge or parameter setting.

– Decision trees can handle high dimensional data.

– Easy to interpret for small-sized trees

– The learning and classification steps of decision tree 
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– The learning and classification steps of decision tree 

induction are simple and fast.

– Accuracy is comparable to other classification 

techniques for many simple data sets

– Convertible to simple and easy to understand 

classification rules



Decision Tree

� Decision tree algorithms have been used for 

classification in many application areas, such as:

– Medicine

– Manufacturing and production

– Financial analysis
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– Astronomy

– Molecular biology.



2. Basic Algorithm
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Decision Tree Algorithms

� ID3 (Iterative Dichotomiser) algorithm

– Developed by J. Ross Quinlan

– During the late 1970s and early 1980s

� C4.5 algorithm

– Quinlan later presented C4.5 (a successor of ID3)

– Became a benchmark to which newer supervised 
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– Became a benchmark to which newer supervised 

learning algorithms are often compared.

– Commercial successor: C5.0

� CART (Classification and Regression Trees) algorithm

– The generation of binary decision trees

– Developed by a group of statisticians



Decision Tree Algorithms

� ID3, C4.5, and CART adopt a greedy (i.e., 

nonbacktracking) approach in which decision 

trees are constructed in a top-down recursive 

divide-and-conquer manner. 

� Most algorithms for decision tree induction also 

follow such a top-down approach, which starts 

Decision Tree 

follow such a top-down approach, which starts 

with a training set of instances and their 

associated class labels. 

� The training set is recursively partitioned into 

smaller subsets as the tree is being built.



Basic Algorithm

� Basic algorithm (a greedy algorithm)

– Tree is constructed in a top-down recursive divide-

and-conquer manner

– At start, all the training examples are at the root

– Attributes are categorical (if continuous-valued, they 

are discretized in advance)
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are discretized in advance)

– Examples are partitioned recursively based on 

selected attributes

– Test attributes are selected on the basis of a heuristic 

or statistical measure (e.g., information gain)



Basic Algorithm

� Algorithm: Generate_decision_tree

� Parameters:

– D, a data set

– Attribute_list : a list of attributes describing the 

instances
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– Attribute_selection_method : a heuristic procedure for 

selecting the attribute



Basic Algorithm

� Step 1

– The tree starts as a single node, N, representing the 

training instances in D

� Steps 2

– If the instances in D are all of the same class, then 

node N becomes a leaf and is labeled with that class. 
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node N becomes a leaf and is labeled with that class. 

� Steps 3

– if attribute_list is empty then return N as a leaf node 

labeled with the majority class in D

– Steps 3 is terminating conditions. 



Basic Algorithm

� Step 4

– the algorithm calls Attribute_selection_method to 

determine the splitting criterion. 

– The splitting criterion tells us which attribute to test at 

node N by determining the “best” way to separate or 

partition the instances in D into individual classes
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partition the instances in D into individual classes

– The splitting criterion indicates the splitting attribute

and may also indicate either a split-point or a splitting 

subset.



Basic Algorithm

� Step 5

– The node N is labeled with the splitting criterion, 

which serves as a test at the node

� Steps 6

– A branch is grown from node N for each of the 

outcomes of the splitting criterion. 

Decision Tree 

outcomes of the splitting criterion. 

– The instances in D are partitioned accordingly

– Let A be the splitting_attribute, there are three 

possible scenarios for branching:

� A is discrete-valued

� A is continuous-valued

� A is discrete-valued and a binary treemust be produced



Basic Algorithm
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Basic Algorithm

� In scenario a (A is discrete-valued )

– the outcomes of the test at node N correspond directly 

to the known values of A.

– Because all of the instances in a given partition have 

the same value for A, then A need not be considered 

in any future partitioning of the instances. 
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in any future partitioning of the instances. 

– Therefore, it is removed from attribute_list.



Basic Algorithm

� In scenario b (A is continuous-valued)

– the test at node N has two possible outcomes, 

corresponding to the conditions A ≤ split_point and A 

> split_point, respectively.

– where split_point is the split-point returned by 

Attribute_selection_method as part of the splitting 
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Attribute_selection_method as part of the splitting 

criterion.

– The instances are partitioned such that D1 holds the 

subset of class-labeled instances in D for which A ≤ 

split_point, while D2 holds the rest.



Basic Algorithm

� In scenario c (A is discrete-valued and a binary 

tree must be produced)

– The test at node N is of the form “A œ SA?”. 

– SA is the splitting subset for A, returned by 

Attribute_selection_method as part of the splitting 

criterion.
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criterion.



Basic Algorithm

� Step 7

– for each outcome j of splitting_criterion

� let Dj be the set of data tuples in D satisfying outcome j

� if Dj is empty 

– then attach a leaf labeled with the majority class in D to node N;

� Else 
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� Else 

– attach the node by Generate_decision_tree(Dj, attribute list) to 

node N

� Step 8

– The resulting decision tree is returned.



Basic Algorithm

� The algorithm stops only when any one of the 

following terminating conditions is true:

1. All of the instances in partition D (represented at 

node N) belong to the same class (steps 2)

2. There are no remaining attributes for further 

partitioning (step 3). 
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partitioning (step 3). 

3. There are no instances for a given branch, that is, a 

partition Dj is empty (step 7). 



Decision Tree Issues

� Attribute selection measures

– During tree construction, attribute selection measures

are used to select the attribute that best partitions the 

instances into distinct classes. 

� Tree pruning

– When decision trees are built, many of the branches may 
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– When decision trees are built, many of the branches may 

reflect noise or outliers in the training data. 

– Tree pruning attempts to identify and remove such 

branches, with the goal of improving classification 

accuracy on unseen data. 

� Scalability

– Scalability issues related to the induction of decision trees 

from large databases.



3. Attribute Selection Measures
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Attribute Selection Measures

� Which attribute to select?
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Attribute Selection Measures

Decision Tree 



Attribute Selection Measures

� Which is the best attribute?

– Want to get the smallest tree

– choose the attribute that produces the “purest” nodes

� Attribute selection measure

– a heuristic for selecting the splitting criterion that 
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“best” separates a given data partition, D, of class-

labeled training instances into individual classes. 

– If we were to split D into smaller partitions according 

to the outcomes of the splitting criterion, ideally each 

partition would be pure (i.e., all of the instances that 

fall into a given partition would belong to the same 

class).



Attribute Selection Measures

� Attribute selection measures are also known as 

splitting rules because they determine how the 

instances at a given node are to be split.

� The attribute selection measure provides a 

ranking for each attribute describing the given 

training instances. 
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training instances. 

� The attribute having the best score for the 

measure is chosen as the splitting attribute for 

the given instances.



Attribute Selection Measures

� If the splitting attribute is continuous-valued or if 

we are restricted to binary trees then, 

respectively, either a split point or a splitting 

subset must also be determined as part of the 

splitting criterion.

Three popular attribute selection measures:
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� Three popular attribute selection measures:

– Information gain

– Gain ratio

– Gini index



Attribute Selection Measures

� The notation used herein is as follows. 

– Let D, the data partition, be a training set of class-

labeled instances. 

– Suppose the class label attribute has m distinct values 

defining m distinct classes, Ci (for i = 1, … , m)

– Let C be the set of instances of class C in D. 
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– Let Ci,D be the set of instances of class Ci in D. 

– Let |D| and |Ci,D | denote the number of instances in D

and Ci,D, respectively.



Information Gain

Decision Tree 

Information Gain



Attribute Selection Measures

� Select the attribute with the highest information 

gain as the splitting attribute

� This attribute minimizes the information needed 

to classify the instances in the resulting partitions 

and reflects the least impurity in these partitions.
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� ID3 uses information gain as its attribute 

selection measure.

� Entropy (impurity)

– High Entropy means X is from a uniform (boring) 
distribution

– Low Entropy means X is from a varied (peaks and 
valleys) distribution



Attribute Selection Measures

� Need a measure of node impurity:

Non-homogeneous, Homogeneous,
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Non-homogeneous,

High degree of impurity

Homogeneous,

Low degree of impurity



Attribute Selection Measures

� Let pi be the probability that an arbitrary instance 

in D belongs to class Ci, estimated by |Ci, D|/|D|

� Expected information (entropy) needed to 

classify an instance in D is given by:

)(log)(
m

ppDInfo ∑−=
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� Info(D)  (entropy of D)

– the average amount of information needed to identify 

the class label of an instance in D. 

– The smaller information required, the greater the 

purity.
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Attribute Selection Measures

� At this point, the information we have is based 

solely on the proportions of instances of each 

class.

� A log function to the base 2 is used, because the 

information is encoded in bits (It is measured in 

bits).
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bits).



Attribute Selection Measures

� Need a measure of node impurity:

Non-homogeneous, Homogeneous,
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Non-homogeneous,

High degree of impurity

Homogeneous,

Low degree of impurity

( ) 0.469Info D =( ) 1Info D =



Attribute Selection Measures

� Suppose attribute A can be used to split D into v 

partitions or subsets, {D1, D2, … , Dv}, where Dj

contains those instances in D that have outcome 

aj of A.

� Information needed (after using A to split D) to 

classify D:

Decision Tree 

classify D:

� The smaller the expected information (still) 

required, the greater the purity of the partitions.

)(
||

||
)(

1

j

v

j

j

A D Info
D

D
DInfo ×=∑

=



Attribute Selection Measures

� Information gained by branching on attribute A

� Information gain increases with the average 

(D)InfoInfo(D)Gain(A) A−=
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� Information gain increases with the average 

purity of the subsets

� Information gain: information needed before 

splitting – information needed after splitting

– The attribute that has the highest information gain 

among the attributes is selected as the splitting 

attribute.



Example: AllElectronics

� This table presents a training set, D.
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Example: AllElectronics

� The class label attribute, buys_computer, has two 

distinct values (namely, {yes, no}); therefore, 

there are two distinct classes (that is, m = 2).

� Let class C1 correspond to yes and class C2 

correspond to no.

Decision Tree 

� The expected information needed to classify an 

instance in D:
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Example: AllElectronics

� Next, we need to compute the expected 

information requirement for each attribute.

� Let’s start with the attribute age. We need to look 

at the distribution of yes and no instances for 

each category of age. 
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– For the age category youth, 

� there are two yes instances and three no instances. 

– For the category middle_aged, 

� there are four yes instances and zero no instances. 

– For the category senior, 

� there are three yes instances and two no instances. 



Example: AllElectronics

� The expected information needed to classify an instance 

in D if the instances are partitioned according to age is
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Example: AllElectronics

� The gain in information from such a partitioning 

would be

� Similarly

bits 0.246  0.694-0.940DInfoDInfoageGain age ==−= )()()(

029.0)( =incomeGain
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� Because age has the highest information gain 

among the attributes, it is selected as the splitting 

attribute.

048.0)_(

151.0)(

029.0)(
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=
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ratingcreditGain
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incomeGain



Example: AllElectronics

� Branches are grown for each outcome of age. The 

instances are shown partitioned accordingly.
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Example: AllElectronics

� Notice that the instances falling into the partition 

for age = middle_aged all belong to the same 

class. 

� Because they all belong to class “yes,” a leaf 

should therefore be created at the end of this 

branch and labeled with “yes.”
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branch and labeled with “yes.”



Example: AllElectronics

� The final decision tree returned by the algorithm
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Example: Weather Problem
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Example: Weather Problem
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Example: Weather Problem

� attribute Outlook:
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Example: Weather Problem

� Information gain: information before splitting –
information after splitting:

gain(Outlook ) = 0.940 – 0.693
= 0.247 bits

� Information gain for attributes from weather data:
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� Information gain for attributes from weather data:

gain(Outlook ) = 0.247 bits
gain(Temperature ) = 0.029 bits
gain(Humidity ) = 0.152 bits
gain(Windy ) = 0.048 bits



Example: Weather Problem

� Continuing to split
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Example: Weather Problem

� Continuing to split

Decision Tree 



Example: Weather Problem

� Final decision tree
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Continuous-Value Attributes

� Let attribute A be a continuous-valued attribute

� Standard method: binary splits

� Must determine the best split point for A

– Sort the value A in increasing order

– Typically, the midpoint between each pair of adjacent 

Decision Tree 

– Typically, the midpoint between each pair of adjacent 

values is considered as a possible split point

� (ai+ai+1)/2 is the midpoint between the values of ai and ai+1

– Therefore, given v values of A, then v-1 possible splits 

are evaluated.

– The point with the minimum expected information 

requirement for A is selected as the split-point for A



Continuous-Value Attributes

� Split:

– D1 is the set of instances in D satisfying A ≤ split-

point, and D2 is the set of instances in D satisfying A 

> split-point

� Split on temperature attribute:

Decision Tree 

– E.g. temperature < 71.5: yes/4, no/2

temperature > 71.5: yes/5, no/3

– Info = 6/14 info([4,2]) + 8/14 info([5,3])

= 0.939 bits



Gain Ratio
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Gain ratio

� Problem of information gain

– When there are attributes with a large number of 

values

– Information gain measure is biased towards attributes 

with a large number of values

– This may result in selection of an attribute that is non-

Decision Tree 

– This may result in selection of an attribute that is non-

optimal for prediction



Gain ratio

� Weather data with ID code

Decision Tree 



Gain ratio
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� Information gain is maximal for ID code

(namely 0.940 bits)



Gain ratio

� Gain ratio

– a modification of the information gain

– C4.5 uses gain ratio to overcome the problem 

� Gain ratio applies a kind of normalization to 

information gain using a split information

Decision Tree 

� The attribute with the maximum gain ratio is selected as 

the splitting attribute.



Example: Various Partition Numbers

Class Lable

Yes No Total

Attribute 1 Value 1 4 8 12

Value 2 4 8 12

Attribute 2 Value 1 2 4 6

Value 2 2 4 6

Decision Tree 

Value 2 2 4 6

Value 3 2 4 6

Value 4 2 4 6

Gain SplitInfo Gain Ratio

Attribute 1 0.082 1.000 0.082

Attribute 2 0.082 2.000 0.041



Example: Unbalanced Partitions 

Class Label

Yes No Total

Attribute 1 Value 1 2 4 6

Value 2 6 12 18

Attribute 2 Value 1 4 8 12

Value 2 4 8 12

Decision Tree 
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Gain SplitInfo Gain Ratio

Attribute 1 0.082 0.811 0.101

Attribute 2 0.082 1 0.082



Gain ratio

� Example

– Computation of gain ratio for the attribute income. 

– A test on income splits the data into three partitions, 

namely low, medium, and high, containing four, six, 

and four instances, respectively. 

– Computation of the gain ratio of income:
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– Computation of the gain ratio of income:

– Gain(income) = 0.029

– GainRatio(income) = 0.029/0.926 = 0.031
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Gain ratio

� Gain ratios for weather data
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Gini Index
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Gini Index

� Gini index

– is used in CART algorithm.

– measures the impurity of D

– considers a binary split for each attribute.

� If a data set D contains examples from m

Decision Tree 

classes, gini index, gini(D) is defined as

– where pi is the relative frequency of class i in D

∑
=
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m

i
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Gini Index of a Discrete-valued Attribute

� To determine the best binary split on A, we 

examine all of the possible subsets that can be 

formed using known values of A. 

� Need to enumerate all the possible splitting 

points for each attribute
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� If A is a discrete-valued attribute having v distinct 

values, then there are 2v – 2 possible subsets.



Gini Index

� When considering a binary split, we compute a weighted 

sum of the impurity of each resulting partition.

� If a data set D is split on A into two subsets D1 and D2, 

the gini index gini(D) is defined as
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Decision Tree 

� First we calculate Gini index for all subsets of an attribute, 

then the subset that gives the minimum Gini index for that 
attribute is selected.
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Gini Index for Continuous-valued Attributes

� For continuous-valued attributes, each possible 

split-point must be considered. 

� The strategy is similar to that described for 

information gain.

� The point giving the minimum Gini index for a 
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given (continuous-valued) attribute is taken as 

the split-point of that attribute.

� For continuous-valued attributes 

– May need other tools, e.g., clustering, to get the 

possible split values

– Can be modified for categorical attributes



Gini Index

� The reduction in impurity that would be incurred 

by a binary split on attribute A is

� The attribute that maximizes the reduction in 

)()()( DGiniDGiniAGini
A

−=∆
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� The attribute that maximizes the reduction in 

impurity (or, equivalently, has the minimum Gini

index) is selected as the splitting attribute.



Gini Index

� Example: 
– D has 9 instances in buys_computer = “yes” and 5 in “no”

– The impurity of D:
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– the attribute income partitions:

� {low, medium} & {high}

� {low, high} & {medium}

� {low} & {medium, high}



Gini Index

� Example: 
– Suppose the attribute income partitions D into 10 in D1: {low, 

medium} and 4 in D2
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– Similarly, the Gini index values for splits on the 

remaining subsets are: 

� For {low, high} and {medium} is 0.315 

� For {low} and {medium, high} is 0.300 



Gini Index

� The attribute income and splitting subsets {low} 

and {medium, high} and give the minimum Gini

index overall, with a reduction in impurity of:

)()()( DGiniDGiniAGini
A

−=∆
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� Now we should calculate DGini for other 

attributes including age, student, and credit rate. 

� Then we can choose the best attribute for 

splitting.

159.0300.0459.0)( =−=∆ incomeGini



Comparing Attribute Selection Measures

� The three measures, in general, return good 

results but

– Information gain: 

� biased towards multivalued attributes

– Gain ratio: 

� tends to prefer unbalanced splits in which one partition is 
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� tends to prefer unbalanced splits in which one partition is 
much smaller than the others

– Gini index: 

� biased to multivalued attributes

� has difficulty when # of classes is large



Other Attribute Selection Measures

� CHAID: a popular decision tree algorithm, measure 
based on χ2 test for independence

� C-SEP: performs better than information Gain and 
Gini index in certain cases

� G-statistics: has a close approximation to χ2 
distribution 
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distribution 

� MDL (Minimal Description Length) principle: the 
simplest solution is preferred

� Multivariate splits: partition based on multiple variable 
combinations

– CART: can find multivariate splits based on a linear 

combination of attributes.



Attribute Selection Measures

� Which attribute selection measure is the best?

– All measures have some bias.

– Most give good results, none is significantly superior 

than others

– It has been shown that the time complexity of decision 

tree induction generally increases exponentially with 
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tree induction generally increases exponentially with 

tree height. 

– Hence, measures that tend to produce shallower trees 

may be preferred.

� e.g., with multiway rather than binary splits, and that favor 
more balanced splits



4. Tree Pruning
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Tree Pruning

� Overfitting:  An induced tree may overfit the 

training data 

– Too many branches, some may reflect anomalies due 

to noise or outliers

– Poor accuracy for unseen samples

Tree Pruning

Decision Tree 

� Tree Pruning

– To prevent overfitting to noise in the data

– Pruned trees tend to be smaller and less complex 

and, thus, easier to comprehend. 

– They are usually faster and better at correctly 

classifying independent test data.



Tree Pruning

� An unpruned decision tree and a pruned version of it.
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Tree Pruning

� Two approaches to avoid overfitting

– Prepruning

� stop growing a branch when information becomes unreliable

– Postpruning

� take a fully-grown decision tree and remove unreliable 
branches

Decision Tree 

branches

� Postpruning preferred in practice



Prepruning

� Based on statistical significance test

– Stop growing the tree when there is no statistically 

significant association between any attribute and the 

class at a particular node

� Most popular test: chi-squared test

ID3 used chi-squared test in addition to 

Decision Tree 

� ID3 used chi-squared test in addition to 

information gain

– Only statistically significant attributes were allowed to 

be selected by information gain procedure



Postpruning

� Postpruning: first, build full tree & Then, prune it

� Two pruning operations:

– Subtle replacement

– Subtree raising

� Possible strategies: error estimation and 
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� Possible strategies: error estimation and 

significance testing



Subtree replacement

� Subtle replacement:  Bottom-up

– To select some subtrees and replace them with single leaves
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Subtree raising

� Subtree raising

– Delete node, redistribute instances

– Slower than subtree replacement
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5. Scalable Decision Tree Induction 

Methods

Decision Tree 

Methods



Scalable Decision Tree Induction Methods

� Scalability

– Classifying data sets with millions of examples and 

hundreds of attributes with reasonable speed

� ID3, C4.5, and CART

– The existing decision tree algorithms has been well 

established for relatively small data sets.
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established for relatively small data sets.

� The pioneering decision tree algorithms that we 

have discussed so far have the restriction that the 

training instances should reside in memory.



Scalable Decision Tree Induction Methods

� SLIQ

– Builds an index for each attribute and only class list 

and the current attribute list reside in memory

� SPRINT

– Constructs an attribute list data structure 

� PUBLIC

Decision Tree 

� PUBLIC

– Integrates tree splitting and tree pruning: stop growing 

the tree earlier

� RainForest

– Builds an AVC-list (attribute, value, class label)

� BOAT

– Uses bootstrapping to create several small samples
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