Data Mining Part 5. Prediction

5.5. Prediction by Neural Networks

Spring 2010

Instructor: Dr. Masoud Yaghini

Outline

- How the Brain Works
- Artificial Neural Networks
- Simple Computing Elements
- Feed-Forward Networks
- Perceptrons (Single-layer, Feed-Forward Neural Network)
- Perceptron Learning Method
- Multilayer Feed-Forward Neural Network
- Defining a Network Topology
- Backpropagation Algorithm
- Backpropagation and Interpretability
- Discussion
- References

Prediction by Neural Networks

Neuron (nerve cell)

- the fundamental functional unit of all nervous system tissue, including the brain.
- There 10¹¹ neurons in the human brain

Neuron components

- Soma (cell body):
 - provides the support functions and structure of the cell, that contains a cell nucleus.

- Dendrites:

 consist of more branching fibers which receive signal from other nerve cells

Prediction by Neural Networks

Neuron components (cont.)

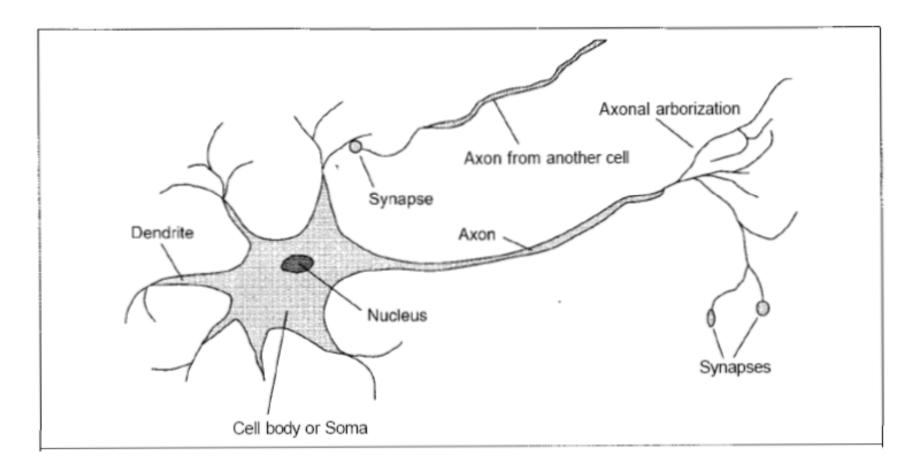
– Axon:

- a branching fiber which carries **signals away from** the neuron that connect to the dendrites and cell bodies of other neurons.
- ◆ In reality, the length of the axon should be about 100 times the diameter of the cell body.

– Synapse:

◆ The connecting junction between axon and dendrites.

• The parts of a nerve cell or neuron.



Neuron Firing Process

Neuron Firing Process

- 1. Synapse receives incoming signals, change electrical potential of cell body
- 2. When a potential of cell body reaches some limit, neuron "fires", electrical signal (action potential) sent down axon
- 3. Axon propagates signal to other neurons, downstream

• How synapse works:

- Excitatory synapse: increasing potential
- Synaptic connection: plasticity
- Inhibitory synapse: decreasing potential

Migration of neurons

- Neurons also form new connections with other neurons
- Sometimes entire collections of neurons can migrate from one place to another.
- These mechanisms are thought to form the basis for learning in the brain.
- A collection of simple cells can lead to thoughts, action, and consciousness.

Comparing brains with digital computers

- Advantages of a human brain vs. a computer
 - Parallelism: all the neurons and synapses are active simultaneously, whereas most current computers have only one or at most a few CPUs.
 - More fault-tolerant: A hardware error that flips a single bit can doom an entire computation, but brain cells die all the time with no ill effect to the overall functioning of the brain.
 - Inductive algorithm: To be trained using an inductive learning algorithm

Prediction by Neural Networks

- Artificial Neural Networks (ANN) Started by psychologists and neurobiologists to develop and test computational analogues of neurons
- Other names:
 - connectionist learning,
 - parallel distributed processing,
 - neural computation,
 - adaptive networks, and
 - collective computation

Artificial neural networks components:

Units

- ◆ A neural network is composed of a number of nodes, or units
- Metaphor for nerve cell body

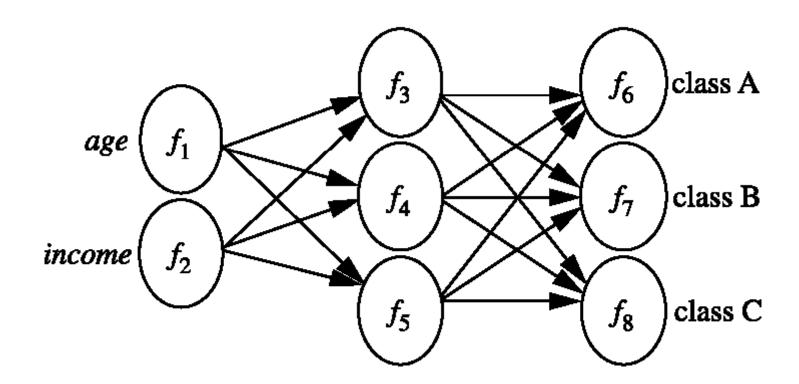
Links

- Units connected by links.
- Links represent synaptic connections from one unit to another

Weight

Each link has a numeric weight

An example of ANN



Long-term memory

 Weights are the primary means of long-term storage in neural networks

Learning method

Learning usually takes place by adjusting the weights.

Input and Output Units

 Some of the units are connected to the external environment, and can be designated as input units or output units

Components of a Unit

- a set of input links from other units,
- a set of output links to other units,
- a current activation level, and
- a means of computing the activation level at the next step in time, given its inputs and weights.
- The idea is that each unit does a local computation based on inputs from its neighbors, but without the need for any global control over the set of units as a whole.

 Real (Biological) Neural Network vs. Artificial Neural Network

Real Neural Network	Artificial Neural Network
Soma / Cell body	Neuron / Node / Unit
Dendrite	Input links
Axon	Output links
Synapse	Weight

- Neural networks can be used for both
 - supervised learning, and
 - unsupervised learning
- For supervised learning neural networks can be used for both
 - classification (to predict the class label of a given example)
 and
 - prediction (to predict a continuous-valued output).
- In this chapter we want to discuss about application of neural networks for **supervised learning**

- To build a neural network must decide:
 - how many units are to be used
 - what kind of units are appropriate
 - how the units are to be connected to form a network.

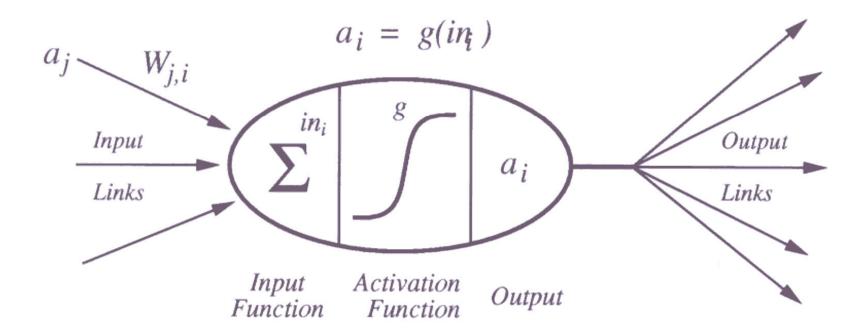
Then

- initializes the weights of the network, and
- trains the weights using a learning algorithm applied to a set of training examples for the task.
- The use of examples also implies that one must decide how to encode the examples in terms of inputs and outputs of the network.

- Each unit performs a simple process:
 - Receives n-inputs
 - Multiplies each input by its weight
 - Applies activation function to the sum of results
 - Outputs result

- Two computational components
 - Linear component:
 - input function, that in_i , that computes the weighted sum of the unit's input values.
 - Nonlinear component:
 - activation function, g, that transforms the weighted sum into the final value that serves as the unit's activation value, a_i
 - Usually, all units in a network use the same activation function.

A typical unit



Total weighted input

$$in_i = \sum_j W_{j,i} a_j$$

- the weights on links from node j into node i are denoted by $W_{j,i}$
- The input values is called a_i

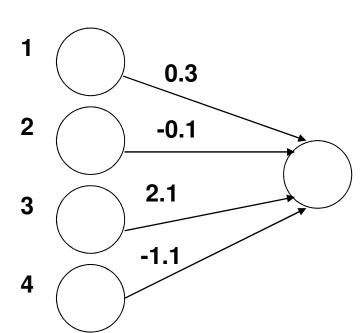
Example: Total weighted input

Input: (3, 1, 0, -2)

Processing:

$$3(0.3) + 1(-0.1) + 0(2.1) + -1.1(-2)$$

$$= 0.9 + (-0.1) + 2.2$$

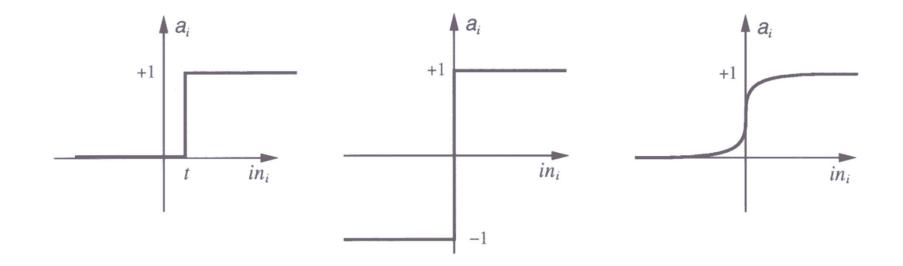


• The activation function g

$$a_i = g(in_i) = g(\sum_j W_{j,i} a_j)$$

- Three common mathematical functions for g are
 - Step function
 - Sign function
 - Sigmoid function

• Three common mathematical functions for *g*



(a) Step function

(b) Sign function

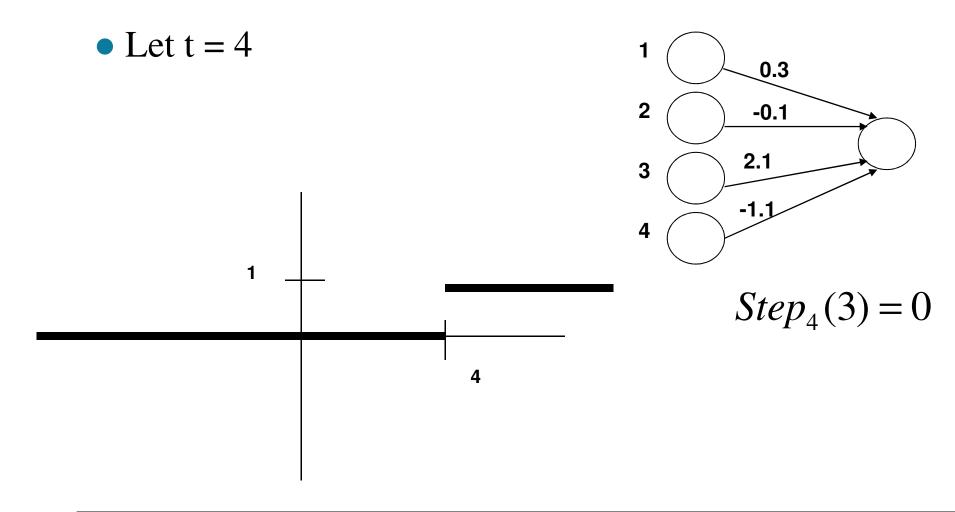
(c) Sigmoid function

$$\operatorname{step}_{t}(x) = \begin{cases} 1, & \text{if } x \ge t \\ 0, & \text{if } x < t \end{cases} \quad \operatorname{sign}(x) = \begin{cases} +1, & \text{if } x \ge 0 \\ -1, & \text{if } x < 0 \end{cases} \quad \operatorname{sigmoid}(x) = \frac{1}{1 + e^{-x}}$$

Step Function

- The **step function** has a threshold *t* such that it outputs a 1 when the input is greater than its threshold, and outputs a 0 otherwise.
- The biological motivation is that a 1 represents the firing of a pulse down the axon, and a 0 represents no firing.
- The threshold represents the minimum total weighted input necessary to cause the neuron to fire.

Step Function Example



Prediction by Neural Networks

Step Function

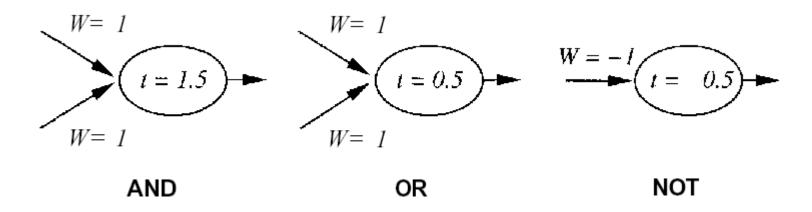
- It mathematically convenient to replace the threshold with an extra input weight.
- Because it need only worry about adjusting weights, rather than adjusting both weights and thresholds.
- Thus, instead of having a threshold t for each unit, we add an extra input whose activation a_0

$$a_i = step_t(\sum_{j=1}^n W_{j,i}a_j) = step_0(\sum_{j=0}^n W_{j,i}a_j)$$

Where
$$W_{0, i} = t$$
 and $a_0 = -1$ \leftarrow fixed

Step Function

- The Figure shows how the Boolean functions *AND*, *OR*, and *NOT* can be represented by units with a step function and suitable weights and thresholds.
- This is important because it means we can use these units to build a network to compute any Boolean function of the inputs.



Sigmoid Function

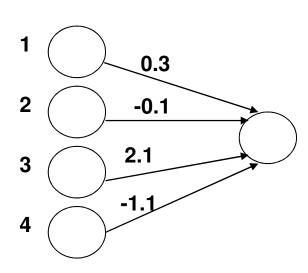
 A sigmoid function often used to approximate the step function

$$f(x) = \frac{1}{1 + e^{-\sigma x}}$$

o: the steepness parameter

Sigmoid Function

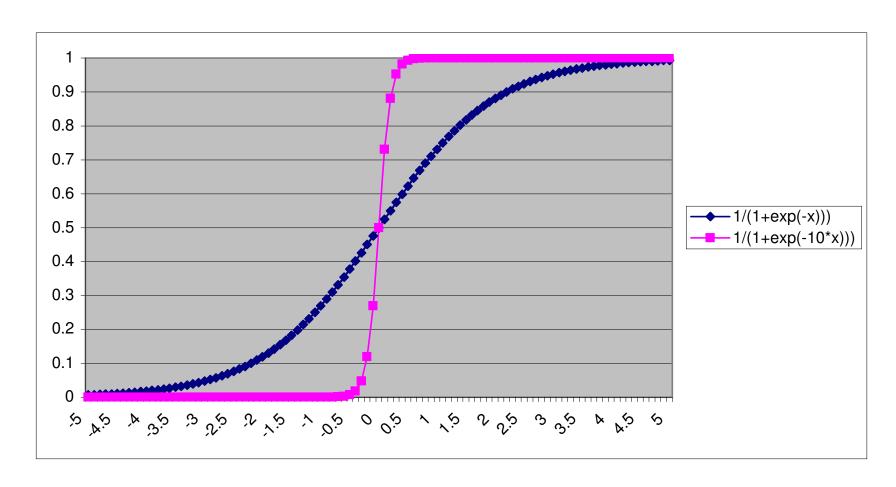
• *Input*: (3, 1, 0, -2), $\sigma = 1$



$$f(x) = \frac{1}{1 + e^{-\sigma x}}$$

$$f(3) = \frac{1}{1 + e^{-x}} \approx 0.95$$

Sigmoid Function

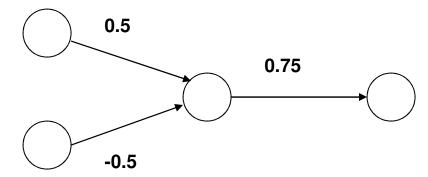


sigmoidal(0) = 0.5

Another Example

- A two weight layer, feedforward network
- Two inputs, one output, one 'hidden' unit
- *Input*: (3, 1)

$$f(x) = \frac{1}{1 + e^{-x}}$$



• What is the output?

Computing in Multilayer Networks

Computing:

- Start at leftmost layer
- Compute activations based on inputs
- Then work from left to right, using computed activations as inputs to next layer

 $f(x) = \frac{1}{1 + e^{-x}}$

- Example solution
 - Activation of hidden unit

•
$$f(0.5(3) + -0.5(1)) = f(1.5 - 0.5) = f(1) = 0.731$$

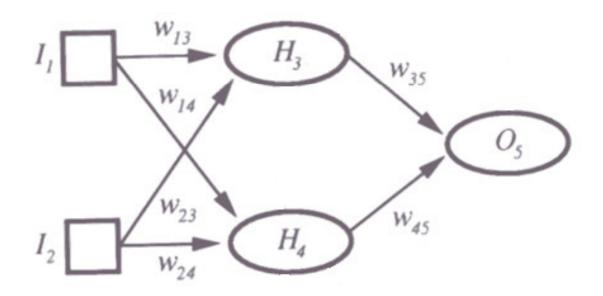
- Output activation
 - f(0.731(0.75)) = f(0.548) = 0.634

Feed-Forward Networks

Feed-forward networks

- Unidirectional links
- Directed acyclic (no cycles) graph (DAG)
- No links between units in the same layer
- No links backward to a previous layer
- No links that skip a layer.
- Uniformly processing from input units to output units

• An example: A two-layer, feed-forward network with two inputs, two hidden nodes, and one output node.



Units

- Input units: the activation value of each of these units is determined by the environment.
- Output units: at the right-hand end of the network units
- Hidden units: they have no direct connection to the outside world.
- Because the input units (square nodes) simply serve to pass activation to the next layer, they are not counted

- Types of feed-forward networks:
 - Perceptrons
 - No hidden units
 - ◆ This makes the learning problem much simpler, but it means that perceptrons are very limited in what they can represent.
 - Multilayer networks
 - one or more hidden units

- Feed-forward networks have a fixed structure and fixed activation functions g
- The functions have a specific parameterized structure
- The weights chosen for the network determine which of these functions is actually represented.
- For example, the network calculates the following function:

$$a_5 = g(W_{3,5}a_3 + W_{4,5}a_4)$$

= $g(W_{3,5}g(W_{1,3}a_1 + W_{2,3}a_2) + W_{4,5}g(W_{1,4}a_1 + W_{2,4}a_2))$

- where g is the activation function, a_i and , is the output of node i.

What neural networks do

- Because the activation functions g are nonlinear, the whole network represents a complex nonlinear function.
- If you think of the weights as parameters or coefficients of this function, then learning just becomes:
 - a process of tuning the parameters to fit the data in the training set—a process that statisticians call nonlinear regression.

Optimal Network Structure

- Too small network
 - incapable of representation
- Too big network
 - not generalized well
 - Overfitting when there are too many parameters.

(Single-layer, Feed-forward Neural Networks)

Prediction by Neural Networks

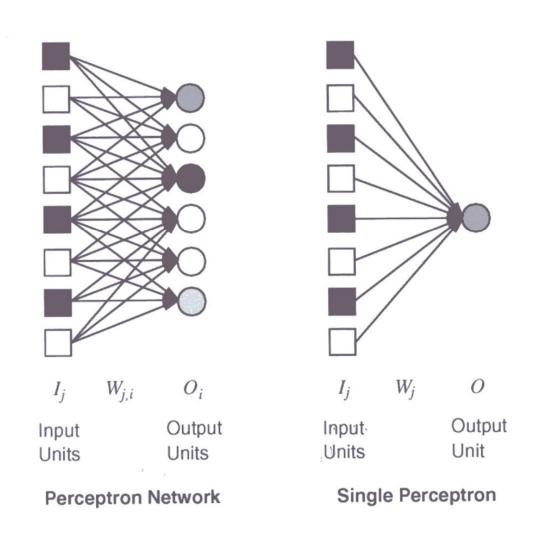
Perceptrons

- Single-layer feed-forward network
- were first studied in the late 1950s

• Types of Perceptrons:

- Single-output Perceptron
 - perceptrons with a single output unit
- Multi-output perceptron
 - perceptrons with several output units

- Each output unit is independent of the others
- Each weight only affects one of the outputs.



Activation of output unit:

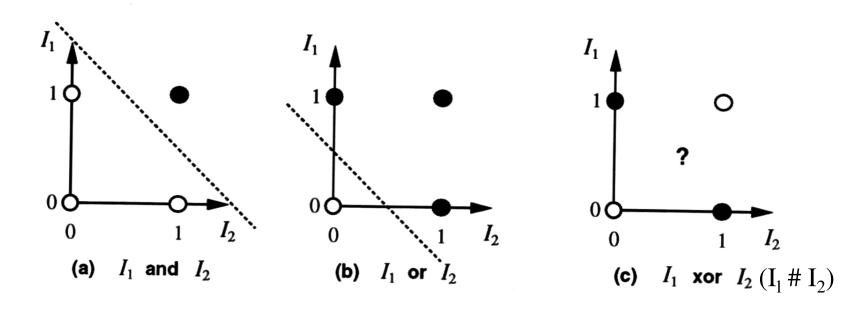
$$O = Step_0 \left(\sum_{j} W_{j} I_{j} \right) = Step_0(\mathbf{W}.\mathbf{I})$$

- W_i : The weight from input unit j
- I_i : The activation of input unit j
- we have assumed an additional weight W_0 to provide a threshold for the step function, with $I_0 = -1$.

- Perceptrons are severely limited in the Boolean functions they can represent.
- The problem is that any input I_j can only influence the final output in one direction, no matter what the other input values are.
- Consider some input vector a.
 - Suppose that this vector has $a_j = 0$ and that the vector produces a 0 as output. Furthermore, suppose that when a_j is replaced with I, the output changes to I. This implies that W_i must be positive.
 - It also implies that there can be no input vector b for which the output is 1 when $b_j = 0$, but the output is 0 when b_j is replaced with 1.

Prediction by Neural Networks

• The Figure shows three different Boolean functions of two inputs, the AND, OR, and XOR functions.



• Black dots indicate a point in the input space where the value of the function is 1, and white dots indicate a point where the value is 0.

- As we will explain, a perceptron can represent a function only if there is some line that separates all the white dots from the black dots.
- Such functions are called **linearly separable.**
- Thus, a perceptron can represent AND and OR, but not XOR (if I₁ # I₂).

• The fact that a perceptron can only represent linearly separable functions follows directly from Equation:

$$O = Step_0 \left(\sum_{j} W_{j} I_{j} \right) = Step_0(\mathbf{W}.\mathbf{I})$$

- A perceptron outputs a 1 only if W . I > 0.
 - This means that the entire input space is divided in two along a boundary defined by $W \cdot I = 0$,
 - that is, a plane in the input space with coefficients given by the weights.

• It is easiest to understand for the case where n = 2. In Figure (a), one possible separating "plane" is the dotted line defined by the equation

$$I_1 = -I_2 + 1.5$$
 or $I_1 + I_2 = 1.5$

• The region above the line, where the output is 1, is therefore given by

$$-1.5 + I_1 + I_2 > 0$$

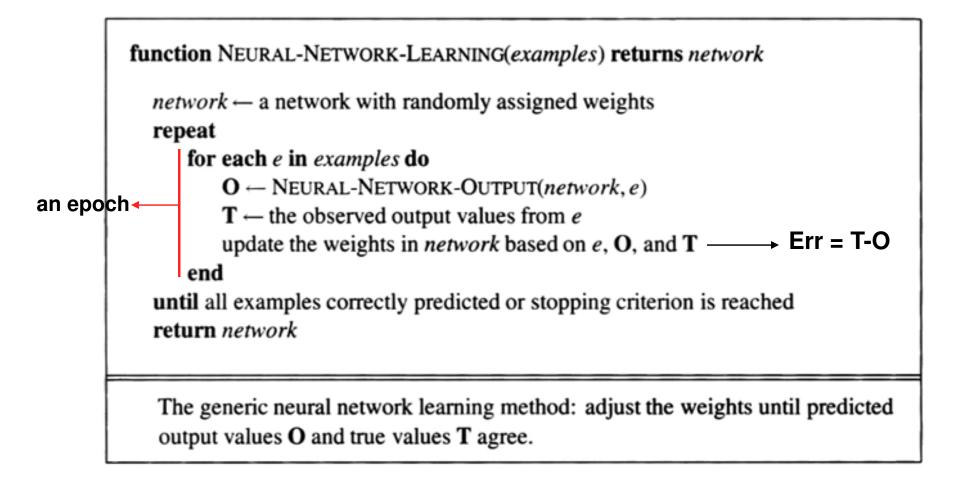
Prediction by Neural Networks

- The initial network has randomly assigned weights, usually from the range [-0.5,0.5].
- The network is then updated to try to make it consistent with the training examples (instances).
- This is done by making small adjustments in the weights to reduce the difference between the observed and predicted values.
- The algorithm is the need to repeat the update phase several times for each example in order to achieve convergence.

Epochs

- The updating process is divided into epochs.
- Each epoch involves updating all the weights for all the examples.

The generic neural network learning method



Prediction by Neural Networks

- The weight update rule
 - If the predicted output for the single output unit is O, and the correct output should be T, then the error is given by

$$Err = T - O$$

- If the *Err* is positive, we need to increase O
- If the *Err* is negative, we need to decrease O
- Each input unit contributes $W_i I_i$ to the total input, so
- If I_i is positive, an increase in W_i will tend to increase O
- If I_i is negative, an increase in W_i will tend to decrease O.

• We can achieve the effect we want with the following rule:

$$W_j \leftarrow W_j + \alpha * I_j * Err$$

- $-\alpha$: is the **learning rate**
- This rule is a variant of the perceptron learning rule proposed by Frank Rosenblatt.
 - Rosenblatt proved that a learning system using the perceptron learning rule will converge to a set of weights that correctly represents the examples, as long as the examples represent a linearly separable function.

Delta Rule for a Single Output Unit

$$\Delta W_j = \alpha (T - O) I_j$$

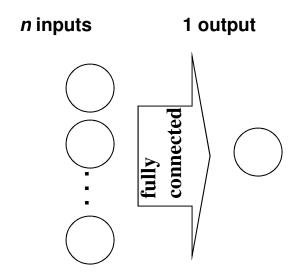
 $\Delta W_{_j}$ Change in $_j$ th weight of weight vector

lpha Learning rate

Target or correct output

O Net (summed, weighted) input to output unit

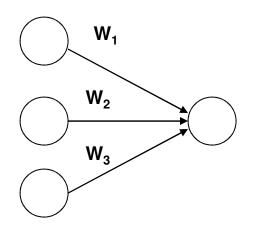
 $I_{\,i}^{}$ j th input value



Example

- W = (W1, W2, W3)
 - Initially: W = (.5 .2 .4)
- Let $\alpha = 0.5$
- Apply delta rule

Sample	Input	Output
1	000	0
2	1 1 1	1
3	100	1
4	001	1



One Epoch of Training

Step	Input	Desired output (T)	Actual output (O)	Starting Weights	Weight updates
1	(0 0 0)	0	0	(.5 .2 .4)	
2	(1 1 1)	1			
3	(1 0 0)	1			
4	(0 0 1)	1			

Delta rule:
$$\Delta W_{_j} = lpha(T-O)I_{_j}$$

Prediction by Neural Networks

One Epoch of Training

Step	Input	Desired output (T)	Actual output (O)	Starting Weights	Weight updates
1	(0 0 0)	0	0	(.5 .2 .4)	W1: 0.1(0 – 0)0 W2: 0.1(0 – 0)0 W3: 0.1(0 – 0)0

Delta rule:
$$\Delta W_{j} = \alpha (T-O)I_{j}$$

delta-rule1.xls

One Epoch of Training

Step	Input	Desired output (T)	Actual output (O)	Starting Weights	Weight updates
1	(0 0 0)	0	0	(.5 .2 .4)	(0 0 0)
2	(1 1 1)	1		(.5 .2 .4)	
3	(1 0 0)	1			
4	(0 0 1)	1			

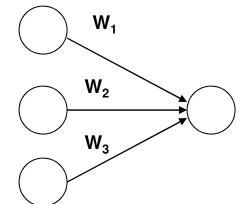
Prediction by Neural Networks

Remaining Steps in First Epoch of Training

Step	Input	Desired output (T)	Actual output (O)	Starting Weights	Weight updates
1	(0 0 0)	0	0	(.5 .2 .4)	(0 0 0)
2	(1 1 1)	1	1.1	(.5 .2 .4)	(050505)
3	(1 0 0)	1	.45	(.45 .15 .35)	(.275 0 0)
4	(0 0 1)	1	.35	(.725 .15 .35)	(0 0 .325)

Completing the Example

- After 18 epochs
 - Weights
 - ◆ W1= 0.990735
 - ◆ W2= -0.970018005
 - \bullet W3= 0.98147



• Does this adequately approximate the training data?

Sample	Input	Output
1	0 0 0	0
2	1 1 1	1
3	100	1
4	0 0 1	1

Prediction by Neural Networks

Example

Actual Outputs

Sample	Input	Desired	Actual Output
		Output	
1	0 0 0	0	0
2	1 1 1	1	1.002187
3	100	1	0.990735
4	0 0 1	1	0.98147

examples in ANN

- There is a slight difference between the example descriptions used for neural networks and those used for other attribute-based methods such as decision trees.
- In a neural network, all inputs are **real numbers** in some fixed range, whereas decision trees allow for multivalued attributes with a discrete set of values.
- For example, an attribute may has values *None*, *Some*, and *Full*.

There are two ways to handle this.

Local encoding

- we use a single input unit and pick an appropriate number of distinct values to correspond to the discrete attribute values.
- For example, we can use None = 0.0, Some = 0.5, and Full = 1.0.

Distributed encoding

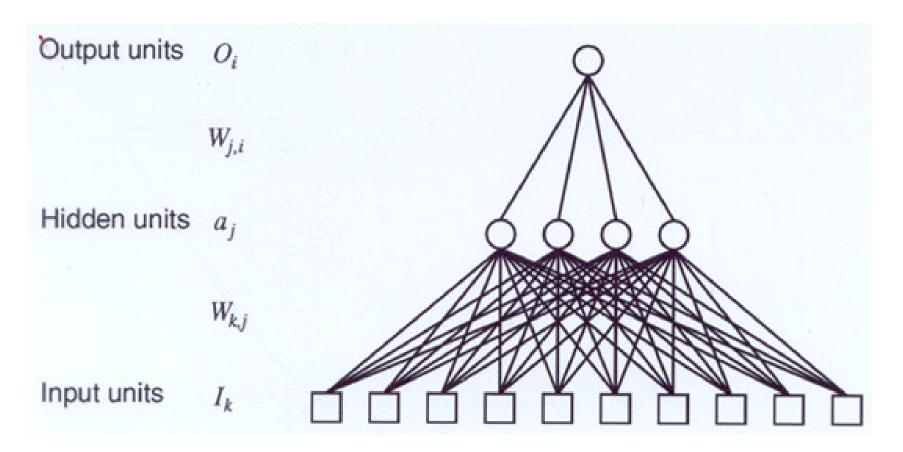
• we use one input unit for each value of the attribute, turning on the unit that corresponds to the correct value.

- A multilayer feed-forward neural network consists of several layers includes:
 - an input layer,
 - one or more hidden layers, and
 - an output layer.

- Each layer is made up of units.
- A two-layer neural network has a hidden layer and an output layer.
- The input layer is not counted because it serves only to pass the input values to the next layer.
- A network containing two hidden layers is called a three-layer neural network, and so on.

- Suppose we want to construct a network for a problem.
- We have **ten attributes** describing each example, so we will need ten input units.
- How many hidden units are needed?
 - The problem of choosing the right number of hidden units in advance is still not well-understood.
- We use a network with four hidden units.

A two-layer feed-forward network



- The **inputs** to the network correspond to the attributes measured for each training example.
- Inputs are fed simultaneously into the units making up the input layer
- They are then weighted and fed simultaneously to a hidden layer
- The number of hidden layers is arbitrary, although in practice, usually only one is used.
- The weighted outputs of the last hidden layer are input to units making up the **output layer**, which sends out the network's prediction.

- The network is **feed-forward** in that none of the weights cycles back to an input unit or to an output unit of a previous layer
- From a statistical point of view, networks perform nonlinear regression
- Given enough hidden units and enough training samples, they can closely approximate any function

Learning method

- example inputs are presented to the network and the network computes an output vector that matches the target.
- If there is an error (a difference between the output and target), then the weights are adjusted to reduce this error.
- The trick is to assess the blame for an error and divide it among the contributing weights.
- In perceptrons, this is easy, because there is only one weight between each input and the output.
- But in multilayer networks, there are many weights connecting each input to an output, and each of these weights contributes to more than one output.

- First decide the network topology:
 - the number of units in the **input layer**
 - the number of **hidden layers** (if > 1),
 - the number of units in each hidden layer
 - the number of units in the **output layer**
- Normalizing the input values for each attribute measured in the training examples to [0.0—1.0] will help speed up the learning phase.

Input units

- Normalizing the input values for each attribute measured in the training examples to [0.0—1.0] will help speed up the learning phase.
- Discrete-valued attributes may be encoded such that there is one input unit per domain value.
 - Example, if an attribute A has three possible or known values, namely $\{a_0, a_1, a_2\}$, then we may assign three input units to represent A. That is, we may have, say, I_0 , I_1 , I_2 as input units.
 - \bullet Each unit is initialized to 0.
 - ◆ Then
 - $-I_0$ is set to 1, If $A = a_1$
 - $-I_1$ is set to 1, If $A = a_2$
 - $-I_2$ is set to 1, If $A = a_3$

Output unit

- For classification, one output unit may be used to represent two classes (where the value 1 represents one class, and the value 0 represents the other).
- If there are more than two classes, then one output unit per class is used.

Hidden layer units

- There are no clear rules as to the "best" number of hidden layer units
- Network design is a trial-and-error process and may affect the accuracy of the resulting trained network.
- Once a network has been trained and its accuracy is unacceptable, repeat the training process with a different network topology or a different set of initial weights

Optimal Network Structure

- Using **genetic algorithm**: for finding a good network structure
- Hill-climbing search (modifying an existing network structure)
 - Start with a big network: optimal brain damage algorithm
- Removing weights from fully connected model
 - Start with a small network: tiling algorithm
- Start with single unit and add subsequent units
- Cross-validation techniques: are useful for deciding when we have found a network of the right size.

Backpropagation Algorithm

Backpropagation

- The backpropagation algorithm performs learning on a multilayer feed-forward neural network.
- It is the most popular method for learning in multilayer networks
- **Backpropagation** iteratively process a set of training examples & compare the network's prediction with the actual known target value
- The target value may be the known class label of the training example (for classification problems) or a continuous value (for prediction problems).

Backpropagation

- For each training example, the weights are modified to minimize the mean squared error between the network's prediction and the actual target value
- Modifications are made in the "backwards" direction
 - from the output layer, through each hidden layer down to the first hidden layer, hence "backpropagation"
 - Although it is not guaranteed, in general the weights will eventually converge, and the learning process stops.

Backpropagation

• Backpropagation algorithm steps:

- Initialize the weights
 - Initialize weights to small random and biases in the network
- Propagate the inputs forward
 - by applying activation function
- Backpropagate the error
 - by updating weights and biases
- Terminating condition
 - when error is very small, etc.

Backpropagation Algorithm

• Input:

- D, a data set consisting of the training examples and their associated target values
- *l*, the learning rate
- network, a multilayer feed-forward network

Output:

A trained neural network.

Initialize the weights

• 1) Initialize the weights

- The weights in the network are initialized to small random numbers
- e.g., ranging from -1.0 to 1.0 or -0.5 to 0.5
- Each unit has a bias associated with it
- The biases are similarly initialized to small random numbers.
- Each training example is processed by the steps 2 to 8.

• 2) determining the output of input layer units

- the training example is fed to the input layer of the network.
- The inputs pass through the input units, unchanged.
- For an input unit, j,
 - its input value, I_j
 - its output, O_i , is equal to its input value, I_i .

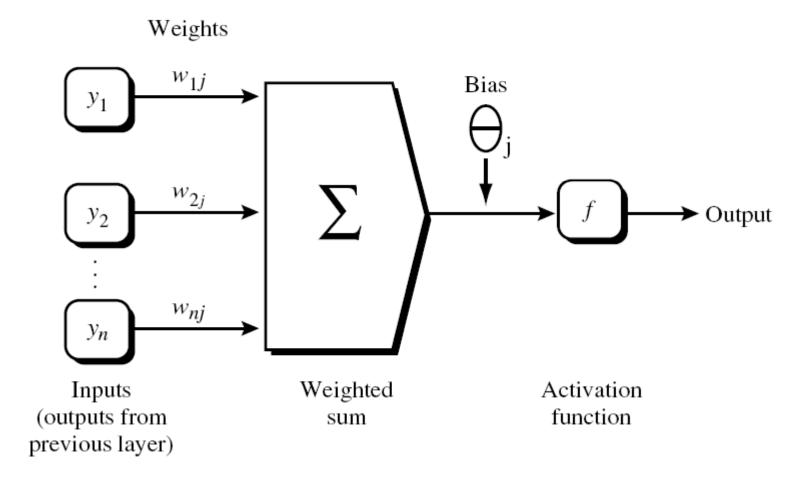
3) compute the net input of each unit in the hidden and output layers

- The net input to a unit in the hidden or output layers is computed as a linear combination of its inputs.
- Given a unit j in a hidden or output layer, the net input, I_j , to unit j is

$$I_{j} = \sum_{i} w_{ij} O_{i} + \theta_{j}$$

- where w_{ij} is the weight of the connection from unit i in the previous layer to unit j
- ◆ O_i is the output of unit i from the previous layer
- \bullet Θ_i is the bias of the unit

• A hidden or output layer unit *j*



- 4) compute the output of each unit j in the hidden and output layers
 - The output of each unit is calculating by applying an activation function to its net input
 - The **logistic**, or **sigmoid**, function is used.
 - Given the net input I_j to unit j, then O_j , the output of unit j, is computed as:

$$O_j = \frac{1}{1 + e^{-I_j}}$$

• 5) compute the error for each unit j in the output layer

- For a unit j in the output layer, the error Err_j is computed by

$$Err_j = O_j(1 - O_j)(T_j - O_j)$$

- O_j is the actual output of unit j,
- T_i is the known target value of the given training example
- Note that O_j (1 O_j) is the derivative of the logistic function.

- 6) compute the error for each unit j in the hidden layers, from the last to the first hidden layer
 - The error of a hidden layer unit j is

$$Err_{j} = O_{j}(1 - O_{j}) \sum_{k} Err_{k} w_{jk}$$

- w_{jk} is the weight of the connection from unit j to a unit k in the next higher layer, and
- Err_k is the error of unit k.

- 7) update the weights for each weight w_{ij} in network
 - Weights are updated by the following equations

$$w_{ij} = w_{ij} + \Delta w_{ij}$$
$$\Delta w_{ij} = (l)Err_j O_i$$

- Δw_{ij} is the change in weight w_{ij}
- The variable *l* is the **learning rate**, a constant typically having a value between 0.0 and 1.0

Learning rate

- Backpropagation learns using a method of gradient descent
- The learning rate helps avoid getting stuck at a local minimum in decision space (i.e., where the weights appear to converge, but are not the optimum solution) and encourages finding the global minimum.
- If the learning rate is **too small**, then learning will occur at a very slow pace.
- If the learning rate is too large, then oscillation between inadequate solutions may occur.
- A rule to set the learning rate to 1 / t, where t is the number of iterations through the training set so far.

• 8) update the for each bias θ_i in network

Biases are updated by the following equations below:

$$\theta_{j} = \theta_{j} + \Delta \theta_{j}$$
$$\Delta \theta_{i} = (l)Err_{i}$$

- $-\Delta\Theta_{j}$ is the change in bias Θ_{j}
- There are two strategies for updating the weights and biases

Updating strategies:

Case updating

- updating the weights and biases after the presentation of each example.
- case updating is more common because it tends to yield more accurate result

Epoch updating

- ◆ The weight and bias increments could be accumulated in variables, so that the weights and biases are updated after all of the examples in the training set have been presented.
- One iteration through the training set is an epoch.

Terminating Condition

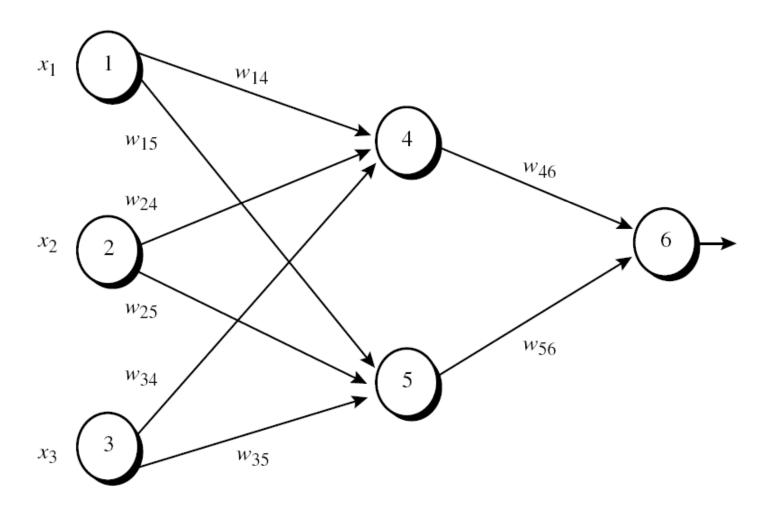
9) Checking the stopping condition

- After finishing the processed for all training examples, we must evaluate the stopping condition
- Stopping condition: Training stops when
 - All Δw_{ij} in the previous epoch were so small as to be below some specified threshold, or
 - ◆ The percentage of examples misclassified in the previous epoch is below some threshold, or
 - ◆ A prespecified number of epochs has expired.
- In practice, several hundreds of thousands of epochs may be required before the weights will converge.
- If stopping condition was not true steps 2 to 8 should repeat for all training examples

Efficiency of Backpropagation

- The computational efficiency depends on the time spent training the network.
- However, in the worst-case scenario, the number of epochs can be exponential in *n*, the number of inputs.
- In practice, the time required for the networks to converge is highly variable.
- A number of techniques exist that help speed up the training time.
 - Metaheuristic algorithms such as simulated annealing algorithm can be used, which also ensures convergence to a global optimum.

• The Figure shows a multilayer feed-forward neural network



- This example shows the calculations for backpropagation, given the first training example, X.
- Let the **learning rate** be 0.9.
- The initial weight and bias values of the network are given in the Table, along with the first training example, X = (1, 0, 1), whose class label is 1.

x_1	x_2	х3	w ₁₄	w ₁₅	w ₂₄	w ₂₅	w34	w35	w46	w56	θ_4	θ_5	θ_6
1	0	1	0.2	-0.3	0.4	0.1	-0.5	0.2	-0.3	-0.2	-0.4	0.2	0.1

• The net input and output calculations:

$$I_{j} = \sum_{i} w_{ij} O_{i} + \theta_{j}$$
$$O_{j} = \frac{1}{1 + e^{-I_{j}}}$$

Unit j	Net input, I_j	Output, O_j
4	0.2 + 0 - 0.5 - 0.4 = -0.7	$1/(1+e^{0.7}) = 0.332$
5	-0.3 + 0 + 0.2 + 0.2 = 0.1	$1/(1 + e^{-0.1}) = 0.525$
6	(-0.3)(0.332) - (0.2)(0.525) + 0.1 = -0.105	$1/(1 + e^{0.105}) = 0.474$

- Calculation of the error at each node:
 - The output layer

$$Err_j = O_j(1 - O_j)(T_j - O_j)$$

The hidden layer

$$Err_{j} = O_{j}(1 - O_{j}) \sum_{k} Err_{k} w_{jk}$$

Unit j	Err _j
6	(0.474)(1-0.474)(1-0.474)=0.1311
5	(0.525)(1-0.525)(0.1311)(-0.2) = -0.0065
4	(0.332)(1-0.332)(0.1311)(-0.3) = -0.0087

• Calculations for weight and bias updating:

Weight or bias	New value	
Treight of blus		14 , -14 , $\pm \Lambda_{14}$
W46	-0.3 + (0.9)(0.1311)(0.332) = -0.261	$w_{ij} = w_{ij} + \Delta w_{ij}$
w ₅₆	-0.2 + (0.9)(0.1311)(0.525) = -0.138	
w_{14}	0.2 + (0.9)(-0.0087)(1) = 0.192	$\Delta w_{ij} = (l) Err_j O_j$
w_{15}	-0.3 + (0.9)(-0.0065)(1) = -0.306	
w_{24}	0.4 + (0.9)(-0.0087)(0) = 0.4	$\Delta \theta_i = (l)Err_i$
w ₂₅	0.1 + (0.9)(-0.0065)(0) = 0.1	$\Delta \sigma_j$ (i) Δm_j
w ₃₄	-0.5 + (0.9)(-0.0087)(1) = -0.508	Q = Q + AQ
w ₃₅	0.2 + (0.9)(-0.0065)(1) = 0.194	$\theta_{j} = \theta_{j} + \Delta \theta_{j}$
θ_6	0.1 + (0.9)(0.1311) = 0.218	
θ_5	0.2 + (0.9)(-0.0065) = 0.194	
θ_4	-0.4 + (0.9)(-0.0087) = -0.408	

- Several variations and alternatives to the backpropagation algorithm have been proposed for classification in neural networks.
- These may involve:
 - the dynamic adjustment of the network topology and of the learning rate
 - New parameters
 - The use of different error functions

Backpropagation and Interpretability

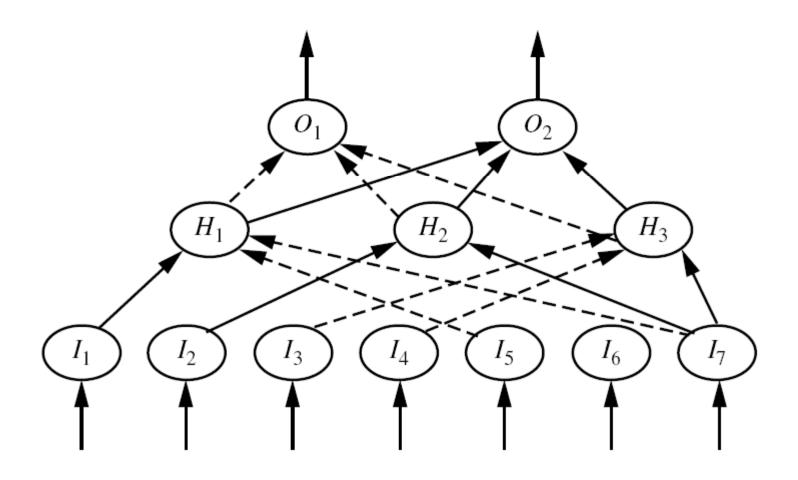
Backpropagation and Interpretability

- Neural networks are like a black box.
- A major disadvantage of neural networks lies in their knowledge representation.
- Acquired knowledge in the form of a network of units connected by weighted links is difficult for humans to interpret.
- This factor has motivated research in extracting the knowledge embedded in trained neural networks and in representing that knowledge symbolically.
- Methods include:
 - extracting rules from networks
 - sensitivity analysis

- Often the first step toward extracting rules from neural networks is network pruning
 - This consists of simplifying the network structure by removing weighted links that have the least effect on the trained network.

- Rule extraction from networks
 - Often, the first step toward extracting rules from neural networks is **network pruning**.
 - ◆ This consists of simplifying the network structure by removing weighted links that have the least effect on the trained network
 - Then perform link, unit, or activation value clustering
 - In one method, for example, clustering is used to find the set of common activation values for each hidden unit in a given trained two-layer neural network.
 - The set of input and activation values are studied to derive rules describing the relationship between the input and hidden unit layers

• Rules can be extracted from training neural networks



Identify sets of common activation values for each hidden node, H_i :

```
for H_1: (-1,0,1)
for H_2: (0.1)
for H_3: (-1,0.24,1)
```

Derive rules relating common activation values with output nodes, O_i :

IF
$$(H_2 = 0 \text{ AND } H_3 = -1) \text{ OR}$$

 $(H_1 = -1 \text{ AND } H_2 = 1 \text{ AND } H_3 = -1) \text{ OR}$
 $(H_1 = -1 \text{ AND } H_2 = 0 \text{ AND } H_3 = 0.24)$
THEN $O_1 = 1$, $O_2 = 0$
ELSE $O_1 = 0$, $O_2 = 1$

Derive rules relating input nodes, I_j , to output nodes, O_j :

IF
$$(I_2 = 0 \text{ AND } I_7 = 0) \text{ THEN } H_2 = 0$$

IF $(I_4 = 1 \text{ AND } I_6 = 1) \text{ THEN } H_3 = -1$
IF $(I_5 = 0) \text{ THEN } H_3 = -1$

Obtain rules relating inputs and output classes:

IF
$$(I_2 = 0 \text{ AND } I_7 = 0 \text{ AND } I_4 = 1 \text{ AND } I_6 = 1)$$
 THEN class = 1
IF $(I_2 = 0 \text{ AND } I_7 = 0 \text{ AND } I_5 = 0)$ THEN class = 1

Sensitivity analysis

- assess the impact that a given input variable has on a network output.
- The knowledge gained from this analysis can be represented in rules
- Such as "IF X decreases 5% THEN Y increases 8%."

Discussion

Prediction by Neural Networks

Discussion

- Weakness of neural networks
 - Long training time
 - Require a number of parameters typically best determined empirically
 - e.g., the network topology or structure.
 - Poor interpretability
 - ◆ Difficult to interpret the symbolic meaning behind the learned weights and of "hidden units" in the network

Discussion

- Strength of neural networks
 - High tolerance to noisy data
 - It can be used when you may have little knowledge of the relationships between attributes and classes
 - Well-suited for continuous-valued inputs and outputs
 - Successful on a wide array of real-world data
 - Algorithms are inherently parallel
 - Techniques have recently been developed for the extraction of rules from trained neural networks

Research Areas

- Finding optimal network structure
 - e.g. by genetic algorithms
- Increasing learning speed (efficiency)
 - e.g. by simulated annealing
- Increasing accuracy (effectiveness)
- Extracting rules from networks

References

Prediction by Neural Networks

References

- J. Han, M. Kamber, **Data Mining: Concepts and Techniques**, Elsevier Inc. (2006). (Chapter 6)
- S. J. Russell and P. Norvig, Artificial Intelligence, A Modern Approach, Prentice Hall, 1995. (Chapter 19)

The end