
Data Mining
Part 5. Prediction

5.6. Nearest-Neighbor Classification

Lazy Learners

Spring 2010

Instructor: Dr. Masoud Yaghini

Outline

� Lazy Learning vs. Eager Learning

� k-Nearest-Neighbor Classifiers

� References

Lazy Learners

Lazy Learning vs. Eager Learning

Lazy Learners

Lazy Learning vs. Eager Learning

� Lazy learning vs. Eager learning

– Eager learning

� Given a set of training set, constructs a classification model
before receiving new (e.g., test) data to classify

� e.g. decision tree induction, Bayesian classification, rule-based
classification

Lazy Learners

– Lazy learning

� Simply stores training data (or only minor processing) and
waits until it is given a new instance

� Lazy learners take less time in training but more time in
predicting

� e.g., k-nearest-neighbor classifiers, case-based reasoning
classifiers

Example Problem: Face Recognition

� We have a database of (say) 1 million face

images

� We are given a new image and want to find the

most similar images in the database

� Represent faces by (relatively) invariant values,

Lazy Learners

e.g., ratio of nose width to eye width

� Each image represented by a large number of

numerical features

� Problem: given the features of a new face, find

those in the DB that are close in at least ¾ (say)

of the features

Lazy Learning

� Typical approaches of lazy learning:

– k-nearest neighbor approach

� Instances represented as points in a Euclidean space.

– Case-based reasoning
� Uses symbolic representations and knowledge-based

inference

Locally weighted regression

Lazy Learners

– Locally weighted regression

� Constructs local approximation

k-Nearest-Neighbor Classifiers

Lazy Learners

k-Nearest-Neighbor Classifiers

� k-Nearest-Neighbor Method

– first described in the early 1950s

– It has since been widely used in the area of pattern

recognition.

– The training instances are described by n attributes.

– Each instance represents a point in an n-dimensional

Lazy Learners

– Each instance represents a point in an n-dimensional

space.

– A k-nearest-neighbor classifier searches the pattern

space for the k training instances that are closest to

the unknown instance.

k-Nearest-Neighbor Classifiers

� Example:

– We are interested in classifying the type of drug a

patient should be prescribed

– Based on the age of the patient and the patient’s

sodium/potassium ratio (Na/K)

– Dataset includes 200 patients

Lazy Learners

– Dataset includes 200 patients

Scatter plot

Lazy Learners

Close-up of neighbors to new patient 2

� Main questions:

– How many neighbors should we consider? That is,

what is k?

– How do we measure distance?

– Should all points be weighted equally, or should some

points have more influence than others?

Lazy Learners

points have more influence than others?

k-Nearest-Neighbor Classifiers

� The nearest neighbor can be defined in terms of
Euclidean distance, dist(X1, X2)

� The Euclidean distance between two points or
instances, say, X1 = (x11, x12, … , x1n) and X2 = (x21,
x22, ... , x2n), is:

Lazy Learners

– Nominal attributes: distance either 0 or 1

– Refer to cluster analysis for more distance metrics

k-Nearest-Neighbor Classifiers

� Typically, we normalize the values of each attribute in
advanced.

� This helps prevent attributes with initially large
ranges (such as income) from outweighing attributes
with initially smaller ranges (such as binary
attributes).

Lazy Learners

attributes).

� Min-max normalization:

– all attribute values lie between 0 and 1

– For more information on normalization methods refer

to data preprocessing section

k-Nearest-Neighbor Classifiers

� For k-nearest-neighbor classification, the unknown
instance is assigned the most common class among
its k nearest neighbors.

� When k = 1, the unknown instance is assigned the
class of the training instance that is closest to it in
pattern space.

Lazy Learners

pattern space.

� Nearest-neighbor classifiers can also be used for
prediction, that is, to return a real-valued prediction
for a given unknown instance.

– In this case, the classifier returns the average value of the

real-valued labels associated with the k nearest neighbors

of the unknown instance.

k-Nearest-Neighbor Classifiers

� Distances for categorical attributes:

– A simple method is to compare the corresponding

value of the attribute in instance X1 with that in

instance X2.

– If the two are identical (e.g., instances X1 and X2 both

have the color blue), then the difference between the

Lazy Learners

have the color blue), then the difference between the

two is taken as 0, otherwise 1.

– Other methods may incorporate more sophisticated

schemes for differential grading (e.g., where a

difference score is assigned, say, for blue and white

than for blue and black).

– For more information refer to cluster analysis section

k-Nearest-Neighbor Classifiers

� Handling missing values:

– In general, if the value of a given attribute A is missing

in instance X1 and/or in instance X2, we assume the

maximum possible difference.

– For categorical attributes, we take the difference value

to be 1 if either one or both of the corresponding

Lazy Learners

to be 1 if either one or both of the corresponding

values of A are missing.

– If A is numeric and missing from both instances X1

and X2, then the difference is also taken to be 1.

� If only one value is missing and the other (which we’ll call v’) is
present and normalized, then we can take the difference to be
either |1 - v’| or |0 – v’| , whichever is greater.

k-Nearest-Neighbor Classifiers

� Determining a good value for k:

– k can be determined experimentally.

– Starting with k = 1, we use a test set to estimate the

error rate of the classifier.

– This process can be repeated each time by

incrementing k to allow for one more neighbor.

Lazy Learners

incrementing k to allow for one more neighbor.

– The k value that gives the minimum error rate may be

selected.

– In general, the larger the number of training instances

is, the larger the value of k will be

Finding nearest neighbors efficiently

� Simplest way of finding nearest neighbor: linear
scan of the data

– Classification takes time proportional to the product of
the number of instances in training and test sets

� Nearest-neighbor search can be done more
efficiently using appropriate methods

Lazy Learners

efficiently using appropriate methods

� kD-trees (k-dimensional trees) represent training
data in a tree structure

kD-trees

� kD-tree is a binary tree that divides the input

space with a hyperplane and then splits each

partition again, recursively.

� The data structure is called a kD-tree because it

stores a set of points in k-dimensional space, k

being the number of attributes.

Lazy Learners

being the number of attributes.

kD-tree example

Lazy Learners

Using kD-trees: example

� The target, which is not one of the instances in the tree, is

marked by a star.

� The leaf node of the region containing the target is

colored black.

� To determine whether one

closer exists, first check

Lazy Learners

closer exists, first check

whether it is possible for a

closer neighbor to lie within

the node’s sibling.

� Then back up to the parent

node and check its sibling

More on kD-trees

� Complexity depends on depth of tree

� Amount of backtracking required depends on

quality of tree

� How to build a good tree? Need to find good split

point and split direction

Lazy Learners

– Split direction: direction with greatest variance

– Split point: median value or value closest to mean

along that direction

� Can apply this recursively

Building trees incrementally

� Big advantage of instance-based learning:

classifier can be updated incrementally

– Just add new training instance!

� We can do the same with kD-trees

� Heuristic strategy:

Lazy Learners

� Heuristic strategy:

– Find leaf node containing new instance

– Place instance into leaf if leaf is empty

– Otherwise, split leaf

� Tree should be rebuilt occasionally

References

Lazy Learners

References

� J. Han, M. Kamber, Data Mining: Concepts and

Techniques, Elsevier Inc. (2006). (Chapter 6)

� I. H. Witten and E. Frank, Data Mining: Practical

Machine Learning Tools and Techniques, 2nd

Lazy Learners

Edition, Elsevier Inc., 2005. (Chapter 6)

The end

Lazy Learners

