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Lazy Learning vs. Eager Learning

� Lazy learning vs. Eager learning

– Eager learning

� Given a set of training set, constructs a classification model 
before receiving new (e.g., test) data to classify

� e.g. decision tree induction, Bayesian classification, rule-based 
classification

Lazy Learners

– Lazy learning 

� Simply stores training data (or only minor processing) and 
waits until it is given a new instance

� Lazy learners take less time in training but more time in 
predicting

� e.g., k-nearest-neighbor classifiers, case-based reasoning 
classifiers



Example Problem: Face Recognition

� We have a database of (say) 1 million face 

images

� We are given a new image and want to find the 

most similar images in the database

� Represent faces by (relatively) invariant values, 
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e.g., ratio of nose width to eye width

� Each image represented by a large number of 

numerical features

� Problem: given the features of a new face, find 

those in the DB that are close in at least ¾ (say) 

of the features



Lazy Learning

� Typical approaches of lazy learning:

– k-nearest neighbor approach

� Instances represented as points in a Euclidean space.

– Case-based reasoning
� Uses symbolic representations and knowledge-based 

inference

Locally weighted regression
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– Locally weighted regression

� Constructs local approximation



k-Nearest-Neighbor Classifiers

Lazy Learners



k-Nearest-Neighbor Classifiers

� k-Nearest-Neighbor Method

– first described in the early 1950s

– It has since been widely used in the area of pattern 

recognition.

– The training instances are described by n attributes. 

– Each instance represents a point in an n-dimensional 
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– Each instance represents a point in an n-dimensional 

space.

– A k-nearest-neighbor classifier searches the pattern 

space for the k training instances that are closest to 

the unknown instance.



k-Nearest-Neighbor Classifiers

� Example:

– We are interested in classifying the type of drug a 

patient should be prescribed

– Based on the age of the patient and the patient’s 

sodium/potassium ratio (Na/K)

– Dataset includes 200 patients
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– Dataset includes 200 patients



Scatter plot
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Close-up of neighbors to new patient 2

� Main questions:

– How many neighbors should we consider? That is, 

what is k?

– How do we measure distance?

– Should all points be weighted equally, or should some 

points have more influence than others?
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points have more influence than others?



k-Nearest-Neighbor Classifiers

� The nearest neighbor can be defined in terms of 
Euclidean distance, dist(X1, X2)

� The Euclidean distance between two points or 
instances, say, X1 = (x11, x12, … , x1n) and X2 = (x21, 
x22, ... , x2n), is:
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– Nominal attributes: distance either 0 or 1

– Refer to cluster analysis for more distance metrics



k-Nearest-Neighbor Classifiers

� Typically, we normalize the values of each attribute in 
advanced. 

� This helps prevent attributes with initially large 
ranges (such as income) from outweighing attributes 
with initially smaller ranges (such as binary 
attributes). 
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attributes). 

� Min-max normalization:

– all attribute values lie between 0 and 1

– For more information on normalization methods refer 

to data preprocessing section



k-Nearest-Neighbor Classifiers

� For k-nearest-neighbor classification, the unknown 
instance is assigned the most common class among 
its k nearest neighbors. 

� When k = 1, the unknown instance is assigned the 
class of the training instance that is closest to it in 
pattern space. 
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pattern space. 

� Nearest-neighbor classifiers can also be used for 
prediction, that is, to return a real-valued prediction 
for a given unknown instance. 

– In this case, the classifier returns the average value of the 

real-valued labels associated with the k nearest neighbors 

of the unknown instance.



k-Nearest-Neighbor Classifiers

� Distances for categorical attributes: 

– A simple method is to compare the corresponding 

value of the attribute in instance X1 with that in 

instance X2. 

– If the two are identical (e.g., instances X1 and X2 both 

have the color blue), then the difference between the 
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have the color blue), then the difference between the 

two is taken as 0, otherwise 1.

– Other methods may incorporate more sophisticated 

schemes for differential grading (e.g., where a 

difference score is assigned, say, for blue and white 

than for blue and black).

– For more information refer to cluster analysis section



k-Nearest-Neighbor Classifiers

� Handling missing values: 

– In general, if the value of a given attribute A is missing 

in instance X1 and/or in instance X2, we assume the 

maximum possible difference. 

– For categorical attributes, we take the difference value 

to be 1 if either one or both of the corresponding 
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to be 1 if either one or both of the corresponding 

values of A are missing. 

– If A is numeric and missing from both instances X1 

and X2, then the difference is also taken to be 1. 

� If only one value is missing and the other (which we’ll call v’) is 
present and normalized, then we can take the difference to be 
either |1 - v’| or |0 – v’| , whichever is greater.



k-Nearest-Neighbor Classifiers

� Determining a good value for k:

– k can be determined experimentally. 

– Starting with k = 1, we use a test set to estimate the 

error rate of the classifier. 

– This process can be repeated each time by 

incrementing k to allow for one more neighbor. 
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incrementing k to allow for one more neighbor. 

– The k value that gives the minimum error rate may be 

selected. 

– In general, the larger the number of training instances 

is, the larger the value of k will be 



Finding nearest neighbors efficiently

� Simplest way of finding nearest neighbor: linear 
scan of the data

– Classification takes time proportional to the product of 
the number of instances in training and test sets

� Nearest-neighbor search can be done more 
efficiently using appropriate methods
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efficiently using appropriate methods

� kD-trees (k-dimensional trees) represent training 
data in a tree structure



kD-trees

� kD-tree is a binary tree that divides the input 

space with a hyperplane and then splits each 

partition again, recursively.

� The data structure is called a kD-tree because it 

stores a set of points in k-dimensional space, k 

being the number of attributes.
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being the number of attributes.



kD-tree example
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Using kD-trees: example

� The target, which is not one of the instances in the tree, is 

marked by a star.

� The leaf node of the region containing the target is 

colored black.

� To determine whether one 

closer exists, first check 
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closer exists, first check 

whether it is possible for a 

closer neighbor to lie within 

the node’s sibling.

� Then back up to the parent 

node and check its sibling



More on kD-trees

� Complexity depends on depth of tree

� Amount of backtracking required depends on 

quality of tree 

� How to build a good tree? Need to find good split 

point and split direction
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– Split direction: direction with greatest variance

– Split point: median value or value closest to mean 

along that direction

� Can apply this recursively



Building trees incrementally

� Big advantage of instance-based learning: 

classifier can be updated incrementally

– Just add new training instance!

� We can do the same with kD-trees

� Heuristic strategy:
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� Heuristic strategy:

– Find leaf node containing new instance

– Place instance into leaf if leaf is empty

– Otherwise, split leaf 

� Tree should be rebuilt occasionally
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