Data Mining Part 5. Prediction

5.7 Regression Analysis

Spring 2010

Instructor: Dr. Masoud Yaghini

Outline

- Introduction
- Linear Regression
- Other Regression Models
- References

- Numerical prediction is similar to classification
 - construct a model
 - use model to predict continuous or ordered value for a given input
- Numeric prediction vs. classification
 - Classification refers to predict categorical class label
 - Numeric prediction models continuous-valued functions

- Regression analysis is the major method for numeric prediction
- Regression analysis model the relationship between
 - one or more independent or predictor variables and
 - a dependent or response variable
- Regression analysis is a good choice when all of the predictor variables are continuous valued as well.

- In the context of data mining
 - The predictor variables are the attributes of interest describing the instance that are known.
 - The response variable is what we want to predict
- Some classification techniques can be adapted for prediction, e.g.
 - Backpropagation
 - k-nearest-neighbor classifiers
 - Support vector machines

• Regression analysis methods:

- Linear regression
 - Straight-line linear regression
 - Multiple linear regression
- Non-linear regression
- Generalized linear model
 - Poisson regression
 - Logistic regression
- Log-linear models
- Regression trees and Model trees

Linear Regression

Linear Regression

Straight-line linear regression:

involves a response variable y and a single predictor variable x

$$y = w_0 + w_1 x$$

- w₀: y-intercept
- w₁: slope
- w₀ & w₁ are regression coefficients

Linear regression

 Method of least squares: estimates the best-fitting straight line as the one that minimizes the error between the actual data and the estimate of the line.

$$w_{1} = \frac{\sum_{i=1}^{|D|} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{|D|} (x_{i} - \bar{x})^{2}} \qquad w_{0} = \bar{y} - w_{1}\bar{x}$$

- *D:* a training set
- x: values of predictor variable
- y: values of response variable
- |D|: data points of the form(x1, y1), (x2, y2), ..., (x<math>|D|, y|D|).
- \bar{x} : the mean value of x1, x2, ..., x/D/
- y: the mean value of y1, y2, ..., y/D/

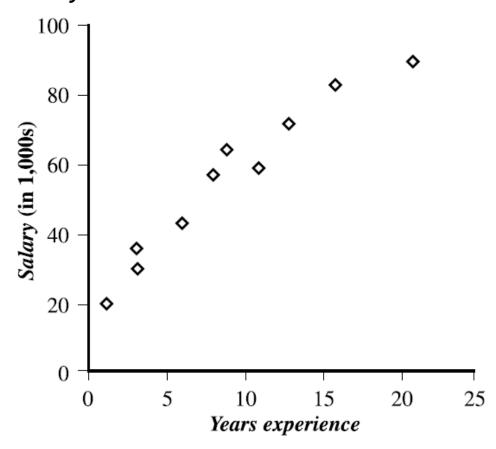
Example: Salary problem

 The table shows a set of paired data where x is the number of years of work experience of a college graduate and y is the corresponding salary of the graduate.

x years experience	y salary (in \$1000s)
3	30
8	57
9	64
13	72
3	36
6	43
11	59
21	90
1	20
16	83

Linear Regression

- The 2-D data can be graphed on a scatter plot.
- The plot suggests a linear relationship between the two variables, x and y.



Example: Salary data

Given the above data, we compute

$$\bar{x} = 9.1 \text{ and } \bar{y} = 55.4$$

we get

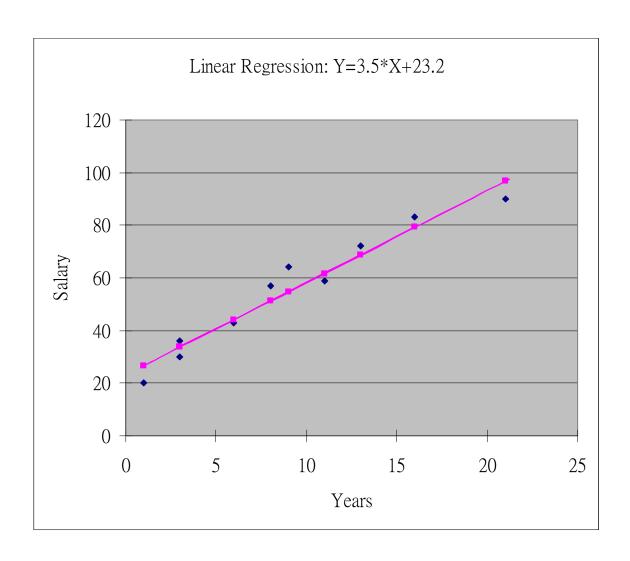
$$w_1 = \frac{(3-9.1)(30-55.4) + (8-9.1)(57-55.4) + \dots + (16-9.1)(83-55.4)}{(3-9.1)^2 + (8-9.1)^2 + \dots + (16-9.1)^2} = 3.5$$

$$w_0 = 55.4 - (3.5)(9.1) = 23.6$$

The equation of the least squares line is estimated by

$$y = 23.6 + 3.5x$$

Example: Salary data



Multiple linear regression

- Multiple linear regression involves more than one predictor variable
- Training data is of the form $(\mathbf{X_1}, \mathbf{y_1}), (\mathbf{X_2}, \mathbf{y_2}), \dots, (\mathbf{X_{|D|}}, \mathbf{y_{|D|}})$
- where the X_i are the n-dimensional training data with associated class labels, y_i
- An example of a multiple linear regression model based on two predictor attributes:

$$y = w_0 + w_1 x_1 + w_2 x_2$$

Example: CPU performance data

	Main memory (KB) Cycle			Cache	Channels		
	time (ns) MYCT	Min. MMIN	Max. MMAX	(KB) CACH	Min. CHMIN	Max. CHMAX	Performance PRP
1	125	256	6000	256	16	128	198
2	29	8000	32000	32	8	32	269
3	29	8000	32000	32	8	32	220
4	29	8000	32000	32	8	32	172
5	29	8000	16000	32	8	16	132
207	125	2000	8000	0	2	14	52
208	480	512	8000	32	0	0	67
209	480	1000	4000	0	0	0	45

PRP = -55.9 + 0.0489 MYCT + 0.0153 MMIN + 0.0056 MMAX + 0.6410 CACH - 0.2700 CHMIN + 1.480 CHMAX.

Multiple Linear Regression

- Various statistical measures exist for determining how well the proposed model can predict y (described later).
- Obviously, the greater the number of predictor attributes is, the slower the performance is.
- Before applying regression analysis, it is common to perform attribute subset selection to eliminate attributes that are unlikely to be good predictors for y.
- In general, regression analysis is accurate for numeric prediction, except when the data contain outliers.

Other Regression Models

Nonlinear Regression

- If data that does not show a linear dependence we can get a more accurate model using a nonlinear regression model
- For example,

$$y = W_0 + W_1 X + W_2 X^2 + W_3 X^3$$

Generalized linear models

- Generalized linear model is foundation on which linear regression can be applied to modeling categorical response variables
- Common types of generalized linear models include
 - Logistic regression: models the probability of some event occurring as a linear function of a set of predictor variables.
 - Poisson regression: models the data that exhibit a Poisson distribution

Log-linear models

- In the log-linear method, all attributes must be categorical
- Continuous-valued attributes must first be discretized.

Regression Trees and Model Trees

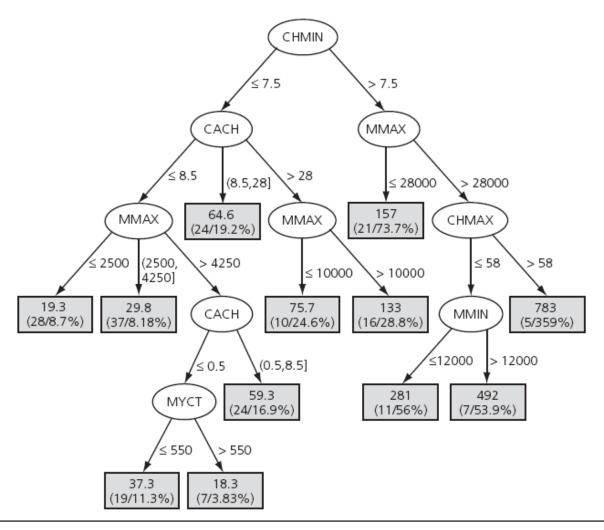
- Trees to predict continuous values rather than class labels
- Regression and model trees tend to be more accurate than linear regression when the data are not represented well by a simple linear model

Regression trees

- Regression tree: a decision tree where each leaf predicts a numeric quantity
- Proposed in CART system (Breiman et al. 1984)
 - CART: Classification And Regression Trees
- Predicted value is average value of training instances that reach the leaf

Example: CPU performance problem

Regression tree for the CPU data



Example: CPU performance problem

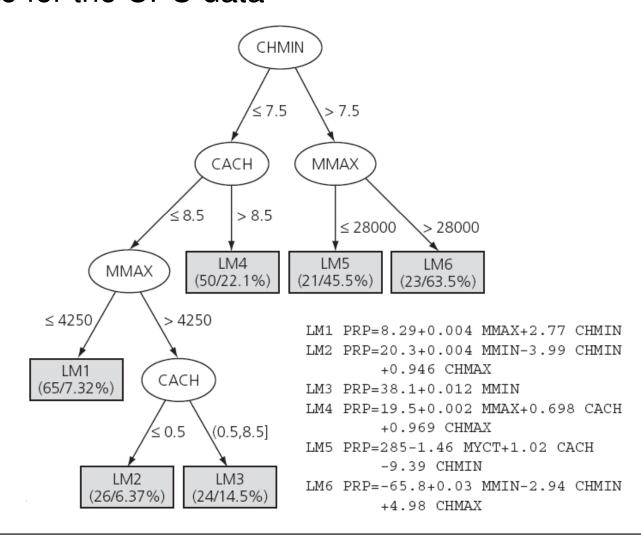
- We calculate the average of the absolute values of the errors between the predicted and the actual CPU performance measures
- It turns out to be significantly less for the tree than for the regression equation.

Model tree

- Model tree: Each leaf holds a regression model
- A multivariate linear equation for the predicted attribute
- Proposed by Quinlan (1992)
- A more general case than regression tree

Example: CPU performance problem

Model tree for the CPU data



References

References

 J. Han, M. Kamber, Data Mining: Concepts and Techniques, Elsevier Inc. (2006). (Chapter 6)

 I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, 2nd Edition, Elsevier Inc., 2005. (Chapter 6)

The end