5. Variables

Fall 2009
Instructor: Dr. Masoud Yaghini

Variables

Outline
<

e Types of Variables

e Naming

e Declaring Variables

e Primitive Data Types

e Default Values

e Literals

e Getting Input from the Console: Scanner Class

® References

Types of Variables

Variables

Types of Variables
. 000000000000

e In the Java programming language, the terms "field"
and "variable" are both used.

e Java actually has four kinds of variables:
- Instance Variables (Non-Static Fields)
— Class Variables (Static Fields)
- Local Variables
- Parameters

Variables

Instance Variables (Non-Static Fields)
o 000001

e Objects store their individual state in non-static
fields.

e Non-static fields are also known as instance
variables because their values are unique to each
instance of a class (to each object, in other words).

e Example:

— The speed of one bicycle is independent from the speed
of another bicycle.

Variables

Class Variables (Static Fields)
o 000001

e A given class will only have one copy of each of its static
fields / class variables and these will be shared among all the
objects.

e Each class variable exists even if no objects of the class have
been created.

e Use the word static to declare a static field.
e Example:

- A field defining the number of gears for a particular kind of bicycle
could be marked as static since conceptually the same number of
gears will apply to all instances.

— The code static int numGears = 6; would create such a static field.

— The keyword final could be added, to indicate that the number of
gears will never change.

Variables

Local Variables
<

e Local variables are available only within the
method that declares them, never anywhere else

e The syntax for declaring a local variable is similar
to declaring a field

e For example, int count = (;

Variables

Parameters
<]

e For the main method 1s public
args)
e The args variable 1s the parameter to this method.

static void main(String|

e The parameters are always classified as "variables,"
not "fields."

Variables

Fields vs. Variables
<

e If we are talking about "fields in general”
(excluding local variables and parameters), we may
simply say "fields."

e If the discussion applies to "all of the above," we
may simply say "variables.*

e If the context calls for a distinction, we will use

specific terms (static field, local variable, etc.) as
appropriate.

Variables

Naming
o
e Variable names are case sensitive.

—- which means that uppercase letters are different from
lowercase letters

— The variable X is therefore different from the variable x

_ and a rose 1s not a Rose 1s not a ROSE

e A variable's name can be any legal unlimited-length
sequence of Unicode letters and digits

Variables

Naming
«c "/« (‘«/+/0___—_/_—/7
e Beginning letter

— A variable's name can be beginning with a letter, the
dollar sign, "$", or the underscore character, "_"

— The convention, however, is to always begin your
variable names with a letter

e lllegal names

- The name you choose must not be a keyword or reserved
word. See Appendix A, "Java Language Keywords"

- White space 1s not permitted
- They cannot start with a number

Variables

Naming
< /0]

e Use full words

- When choosing a name for your variables, use full words
instead of cryptic abbreviations.

- For example, fields named cadence, speed, and gear, are
much more intuitive than abbreviated versions, such as s,
c,and g.

Variables

Naming
< /0]

e If the name you choose consists of only one word,
spell that word 1n all lowercase letters.

- Example: cadence, speed

e If it consists of more than one word, capitalize the
first letter of each subsequent word.

- Example: gearRatio, currentGear

e If your variable stores a constant value, capitalizing
every letter and separating subsequent words with
the underscore character

- Example: static final int NUM_GEARS = 6;

Declaring Variables

Variables

Declaring Variables
. 000000000000

e Using variables
— Declaration
~ Assignment (initialization)
e Variable declarations consist of:
- atype, and
— a variable name
e Example: int gear = 1;
- Doing so tells your program that:
e a variable named "gear" exists,

e holds numerical data, and

e has an initial value of "1".

Variables

Declaring Variables
. 000000000000

e A variable's data type determines the values it
may contain, plus the operations that may be
performed on it.

® You can string together variable names of the same
type on one line:
int x, y, z;
® You can also give each variable an initial value
when you declare it:
intx =1, y=20, z=300;

Variables

Assigning Values to Variables

e Once a variable has been declared, you can assign a

value to that variable by using the assignment
operator =:

size = 14;

tooMuchCaffeine = true;

Primitive Data Types

Variables

Primitive Data Types
|

e A primitive type 1s predefined by the language and
1s named by a reserved keyword.

e Primitive values do not share state with other
primitive values.

e The eight primitive data types:
- Integer types: byte, short, int, long
- Real types: float, double
- Logical type: boolean
- Character type: char

Variables

Primitive Data Types
|

e byte
- 8 bits signed integer, -128 to 127
e short
— 16 bits signed integer, -32,768 to 32,767
e int
— 32 bits signed integer, -2,147,483,648 to 2,147,483,64°7
e long

~ 64 bits signed integer, -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

Variables

Primitive Data Types
|

o float

- single-precision 32-bit floating point
e double

— double-precision 64-bit floating point

e boolean
- has only two possible values: true and false.

— Use this data type for simple flags that track true/false
conditions.

e char
- single 16-bit Unicode character.

— It has a minimum value of \u0000' (or 0) and a maximum
value of "uffff' (or 65,535 inclusive).

Variables

Primitive Data Types
|

e Note that all the primitive types are in lowercase

e Which type you choose for your variables depends

on the range of values you expect that variable to
hold

Variables

Character strings
. 000000000000

e The Java programming language also provides
special support for character strings via the
java.lang.String class.

e Enclosing your character string within double
quotes will automatically create a new String object;
~ for example, String s = "this is a string";

e The String class 1s not technically a primitive data

type, but considering the special support given to it
by the language

Default Values

Variables

Default Values of Fields
<

e Fields that are declared but not initialized will be
set to a reasonable default by the compiler.

e Relying on such default values, however, 1s
generally considered bad programming style.

Variables

Data Types and Their Default Values
. 000000000000

Data Type Default Value (for fields)
byte 0

short 0

int 0

long 0L

float 0.0f

double 0.0d

char '\u0000"

String (or any object) null

boolean false

Variables

Default Values of Local Variables
<

e The compiler never assigns a default value to an
unassigned local variable.

e If you cannot initialize your local variable where 1t
1s declared, make sure to assign it a value before
you attempt to use it.

e your Java program will not compile if you try to use
an unassigned local variable

Literals

Variables

Literals
<

e A literal 1s any number, text, or other information
that directly represents a value.

e As shown below, it's possible to assign a literal to a
variable of a primitive type:
— boolean result = true;
~ char capitalC ='C';
_ byte b = 100;
— short s = 10000;
— 1nt1 = 100000;
e true, C, 100, 10000, 100000 are literals.

Variables

Floating Point Literals
. 000000000000

e The floating point types (float and double) can also
be expressed using:
- E or e (for scientific notation),
— For f (32-bit float literal), and

- D or d (64-bit double literal; this 1s the default and by
convention i1s omitted).

e Examples:
— double d1 = 123.4;
— double d2 = 1.234e2: // same value as dl,
— float f1 = 123.4f;

Variables

Boolean Literals
<

e Boolean literals consist of the keywords true and
false

e These keywords can be used anywhere you need a
test or as the only possible values for boolean
variables

Variables

char Literals
<

e Literals of types char may contain any Unicode (UTF-16)
characters.

e Character literals are expressed by a single character
surrounded by single quotation marks
— "a',#, 3", and so on
e The Java programming language also supports a few special
escape sequences for char and String literals:
\b (backspace), \t (tab), \n (line feed),
\f (form feed), \r (carriage return), \" (double quote),
\' (single quote), \\ (backslash).

Variables

String Literals
|

e A combination of characters 1s a string
e Strings in Java are instances of the class String

e Strings are not simply arrays of characters as they
are in C or C++

e Because string objects are real objects in Java, they
have methods that enable you to combine, test, and
modify strings very easily

e String literals consist of a series of characters inside
double quotation marks:

- "Hi, I'm a string literal."

Variables

String Literals
|

e Strings can contain character constants such as
double quote:
—- "Nested strings are \"strings inside of\" other strings*
e When you use a string literal in your Java program,

Java automatically creates an instance of the class
String for you with the value you give it

Variables

null Literal
<

e There's also a special null literal that can be used as
a value for any reference type.

e null may be assigned to any variable, except
variables of primitive types.

e Therefore, null 1s often used 1n programs as a
marker to indicate that some object 1s unavailable.

Getting Input from the Console:
Scanner Class

Variables

Getting Input from the Console
|

® You can obtain input from the console.

e Java uses System.out to refer to the standard output
device, and System.in to the standard input device.

e By default the output device 1s the console, and the
input device 1s the keyboard.

Variables

Getting Input from the Console
|

e To perform console output, you simply use the
println method to display a primitive value or a
string to the console.

® You can use the Scanner class to create an object to
read input from System.in, as follows:

Scanner scanner = new Scanner(System.in);

Variables

Getting Input from the Console
|

e A Scanner object contains the following methods
for reading an input:
- next(): reading a string. A string 1s delimited by spaces.
- nextByte(): reading an integer of the byte type.
- nextShort(): reading an integer of the short type.
- nextlnt(): reading an integer of the int type.
- nextLong(): reading an integer of the long type.
- nextFloat(): reading a number of the float type.
- nextDouble(): reading a number of the double type.

Variables

Getting Input from the Console

e For example, the following statements prompt the
user to enter a double value from the console.

System.out.print("Enter a double value: ");
Scanner scanner = new Scanner(System.in);

double d = scanner.nextDouble();

e Example:

- TestScanner.java

Variables

Getting Input from the Console
|

e A great strength of Java 1s its rich set of predetined
classes that programmers can reuse rather than
"reinventing the wheel."

e These classes are grouped 1nto packages named
collections of classes.

e Collectively, Java's packages are referred to as the
Java class library, or the Java Application
Programming Interface (Java API).

e Programmers use import declarations to 1dentify the
predefined classes used 1n a Java program.

Variables

Getting Input from the Console
|

import java.util.Scanner; // program uses class Scanner

e The import declaration indicates that this example
uses Java's predefined Scanner class (discussed
shortly) from package java.util.

e Then the compiler attempts to ensure that you use
class Scanner correctly.

Variables

Getting Input from the Console
|

System.out.print("Enter second integer: "); // prompt

— Prompts the user to input the second integer.

e uses System.out.print to display the message:

~ "Enter first integer:".

e This message 1s called a prompt because 1t directs
the user to take a specific action.

e System i1s a class.

e (Class System is part of package java.lang.

Variables

Getting Input from the Console
|

e Notice that class System 1is not imported with an
import declaration at the beginning of the program.

e By default, package java.lang 1s imported in every
Java program;

e java.lang is the only package in the Java API that
does not require an import declaration.

References

Variables

References
o

e S. Zakhour, S. Hommel, J. Royal, I. Rabinovitch, T.
Risser, M. Hoeber, The Java Tutorial: A Short

Course on the Basics, 4th Edition, Prentice Hall,
2006. (Chapter 3)

