12. Numbers

Java

Fall 2009

Instructor: Dr. Masoud Yaghini

Numbers

Outline

- Numeric Type Conversions
- Math Class
- References

Numeric Type Conversions

Numbers

Numeric Data Types (Review)

Name	Range	Storage Size
byte	$-2^{7}(-128)$ to $2^{7}-1(127)$	8-bit signed
short	$-2^{15}(-32768)$ to $2^{15}-1(32767)$	16-bit signed
int	$-2^{31}(-2147483648)$ to $2^{31}-1(2147483647)$	32-bit signed
long	$\begin{aligned} & -2^{63} \text { to } 2^{63}-1 \\ & (\text { i.e., }-9223372036854775808 \text { to } \\ & 9223372036854775807) \end{aligned}$	64-bit signed
float	Negative range: $-3.4028235 \mathrm{E}+38$ to $-1.4 \mathrm{E}-45$ Positive range: 1.4E-45 to 3.4028235E +38	32-bit IEEE 754
double	Negative range: -1.7976931348623157E+308 to -4.9E-324 Positive range: $4.9 \mathrm{E}-324$ to $1.7976931348623157 \mathrm{E}+308$	64-bit IEEE 754

Numeric Type Conversions

- Consider the following statements:

$$
\begin{aligned}
& \text { byte } \mathrm{i}=100 \\
& \text { long } \mathrm{k}=\mathrm{i} * 3+4 \\
& \text { double } \mathrm{d}=\mathrm{i} * 3.1+\mathrm{k} / 2
\end{aligned}
$$

Conversion Rules

- When performing a binary operation involving two operands of different types, Java automatically converts the operand based on the following rules:

1. If one of the operands is double, the other is converted into double.
2. Otherwise, if one of the operands is float, the other is converted into float.
3. Otherwise, if one of the operands is long, the other is converted into long.
4. Otherwise, both operands are converted into int.

Numeric Type Conversions

- For example,
- the result of $1 / 2$ is 0 , because both operands int values.
- the result of $1.0 / 2$ is 0.5 , because 1.0 is double and 2 is converted to 2.0

Numbers

Numeric Type Conversions

- You can always assign a value to a numeric variable whose type supports a larger range of values
- Thus, for instance, you can assign a long value to a float variable.
range increases
byte, short, int, long, float, double

Numbers

Type Casting

- Type casting is an operation that converts a value of one data type into a value of another data type.
- Type widening: Casting a variable of a type with a small range to a variable of a type with a larger range.
- Type narrowing: Casting a variable of a type with a large range to a variable of a type with a smaller range.

Type Casting

- Widening a type can be performed automatically. double d = 3;
- Narrowing a type must be performed explicitly.
int i $=$ (int) 3.0 ;
int i $=$ (int) 3.9 ;
- What is wrong? int $x=5 / 2.0$;

Numbers

Type Casting

- Casting does not change the variable being cast.
- For example, d is not changed after casting in the following code: double $\mathrm{d}=4.5$; int $i=(i n t) d ; / / d$ is not changed

Type Casting

- To assign a variable of the int type to a variable of the short or byte type, explicit casting must be used.
- For example, the following statements have a syntax error:
int $\mathrm{i}=1$;
byte $\mathbf{b}=\mathbf{i}$; // Error because explicit casting is required

Type Casting

- Write a program that displays the sales tax with two digits after the decimal point.
- purchaseAmount $=197.55$
- tax = purchaseAmount * 0.06
- Tax will be 11.853 , but we want the program display two digits after the decimal point (i.e. 11.85).
- The program:
- SalesTax.java

Math Class

Numbers

Math Class

- The Math class contains the methods needed to perform basic mathematical functions.
- This chapter introduces useful methods in the Math class.
- Class constants:
- PI (3.141...)
- E (2.718...)

Numbers

Math Class

- Math Class methods:
- Exponent Methods
- Rounding Methods
- min, max, and abs
- random Methods
- Trigonometric Methods

Numbers

Exponent Methods

- public static double \exp (double x)
- Return e raised to the power of $x\left(e^{x}\right)$
- Math.exp(1) returns 2.71828
- public static double $\log ($ double x)
- Return the natural logarithm of $x(\ln (x))$
- Math.log(Math.E) returns 1.0
- public static double $\log 10($ double $x)$
- Return the base 10 logarithm of $x\left(\log _{10}(x)\right)$
- Math.log10(10) returns 1.0

Numbers

Exponent Methods

- public static double pow(double x, double b)
- Return x raised to the power of $b\left(x^{b}\right)$
- Math.pow $(2,3)$ returns 8.0
- Math.pow $(3,2)$ returns 9.0
- Math.pow(3.5,2.5) returns 22.91765
- public static double sqrt(double x)
- Return the square root of x
- Note that the parameter in the sqrt method must not be negative.
- Math.sqrt(4) returns 2.0
- Math.sqrt(10.5) returns 3.24

Numbers

Rounding Methods

- public static double ceil(double x)
- x rounded up to its nearest integer. This integer is returned as a double value.
- Math.ceil(2.1) returns 3.0
- Math.ceil(2.0) returns 2.0
- Math.ceil(-2.0) returns -2.0
- Math.ceil(-2.1) returns -2.0
- public static double floor(double x)
- x is rounded down to its nearest integer. This integer is returned as a double value.
- Math.floor(2.1) returns 2.0
- Math.floor(2.0) returns 2.0
- Math.floor(-2.1) returns -3.0

Numbers

Rounding Methods

- public static double rint(double x)
- x is rounded to its nearest integer. If x is equally close to two integers, the even one is returned as a double.
- Math.rint(2.1) returns 2.0
- Math.rint(2.0) returns 2.0
- Math.rint(3.5) returns 4.0
- Math.rint(-2.0) returns -2.0
- Math.rint(-2.1) returns -2.0
- Math.rint(2.5) returns 2.0
- Math.rint(-2.5) returns -2.0

Numbers

Rounding Methods

- public static int round(float x)
- Return (int)
- Math.round(2.6f) returns 3 (int)
- Math.round(2.5f) returns 3 (int)
- Math.round(2.4f) returns 2 (int)
- Math.round(-2.0f) returns -2 (int)
- public static long round(double x)
- Return (long)
- Math.round(2.0) returns 2 (long)
- Math.round(-2.6) returns -3 (long)

min, max, and abs Methods

- The min and max methods are overloaded to return the minimum and maximum numbers between two numbers (int, long, float, or double).
- For example,
- Math.max $(3.4,5.0)$ returns 5.0
- Math.min(3,2) returns 2
- Math.max $(2,3)$ returns 3
- Math.max $(2.5,3)$ returns 3.0
- Math.min($2.5,3.6$) returns 2.5

min, max, and abs Methods

- The abs method is overloaded to return the absolute value of the number (int, long, float, and double).
- For example:
- Math.abs(-2) returns 2
- Math.abs(-2.1) returns 2.1

random Method

- random method generates a random double value $0<=$ Math.random() < 1.0.
- You can use it to write a simple expression to generate random numbers in any range.

$$
\mathrm{a}+\text { Math.random(}) * \mathrm{~b}
$$

- Returns a random number between \mathbf{a} and $\mathbf{a}+\mathbf{b}$, excluding $\mathbf{a}+\mathbf{b}$.
- For example:
(int)(Math.random() * 10)
- Returns a random integer between 0 and 9 .
$50+($ int $)($ Math.random() * 50)
- Returns a random integer between 50 and 99 .

Numbers

View java.lang.Math Documentation

- You can view the complete documentation for the Math class online from:
- Sun Microsystems website:
http://java.sun.com/javase/6/docs/api/
- Java 2 SE 6 Documentation on Course website: http://yaghini.iust.ac.ir/Books/j2se6/j2se6.chm

References

References

- Y. Daniel Liang, Introduction to Java Programming, Sixth Edition, Pearson Education, 2007. (Chapter 2 \& 6)

The End

