
13. Packages

Java

Fall 2009

Instructor: Dr. Masoud Yaghini

Packages

Outline

� Introduction

� Package Naming & Directories

� Putting Classes into Packages

� Using Classes from PackagesUsing Classes from Packages

� References

Introduction

Packages

Introduction

� Packages are used to group classes.

� Reasons for using packages
– To avoid naming conflicts: When you develop

reusable classes to be shared by other programmers,
naming conflicts often occur. To prevent this, put your
classes into packages so that they can be referenced classes into packages so that they can be referenced
through package names.

– To distribute software conveniently: Packages group
related classes so that they can be easily distributed.

– To protect classes: Packages provide protection so that
the protected members of the classes are accessible to
the classes in the same package, but not to the external
classes.

Package Naming & Directories

Packages

Package Naming

� Packages are hierarchical, and you can have

packages within packages.

� For example, java.lang.Math indicates that:

– Math is a class in the package lang and that

– lang is a package in the package java.– lang is a package in the package java.

� Levels of nesting can be used to ensure the

uniqueness of package names.

Packages

Package Naming

� Choosing a unique name is important because your package

may be used on the Internet by other programs.

� Java designers recommend that you use your Internet

domain name in reverse order as a package prefix.

� Since Internet domain names are unique, this prevents

naming conflicts. naming conflicts.

� Suppose you want to create a package named mypackage

on a host machine with the Internet domain name

prenhall.com.

� To follow the naming convention, you would name the entire

package com.prenhall.mypackage.

Packages

Naming a Package

� Package names are written in all lowercase to avoid

conflict with the names of classes or interfaces.

� Packages in the Java language itself begin with java.

or javax.

Packages

Package Directories

� Java expects one-to-one mapping of the package name and

the file system directory structure.

� For the package named com.prenhall.mypackage, you

must create a directory, as shown below:

Putting Classes into Packages

Packages

Putting Classes into Packages

� Every class in Java belongs to a package.

� All the classes that you have used so far were placed in

the current directory (a default package) when the Java

source programs were compiled.

� To put a class in a specific package, you need to add the � To put a class in a specific package, you need to add the

following line as the first noncomment and nonblank

statement in the program:

package packagename;

Packages

Putting Classes into Packages

� Let us create a class named Format and place it in

the package com.prenhall.mypackage.

� The Format class contains the format(number,

numberOfDecimalDigits) method

� It returns a new number with the specified number � It returns a new number with the specified number

of digits after the decimal point.

� For example, format(10.3422345, 2) returns 10.34,

and format (-0.343434, 3) returns -0.343.

� Java program:

– Format.java

Packages

Putting Classes into Packages

� A class must be defined as public in order to be

accessed by other programs.

� If you want to put several public classes into the

package, you have to create separate source files for

them, because each file can have only one public them, because each file can have only one public

class.

Packages

Source& Class file directory in IntelliJ IDEA

� NetBeans uses the <projectname>\src directory

path to store source files

� For example, if the project name is MyProject , then

the source code file is automatically stored in
\MyProject\src\com\prenhall\mypackage\\MyProject\src\com\prenhall\mypackage\

� NetBeans uses the <projectname>\build\classes\

directory path to store class files

� If the project name is MyProject , then the class

files is automatically stored in

\MyProject\build\classes\com\prenhall\mypackage\

Using Classes from Packages

Packages

Using Classes from Packages

� Example: Creating two classes

– Format: It contains the format(number,

numberOfDecimalDigits) method and returns a new

number with the specified number of digits after the

decimal point.

– TestFormatClass: to invoke Format class and test it.

Packages

Option 1

� Creating the both classes in the default package and

in the same Java file.

� Program:

– TestFormatClass.java

Packages

Option 2

� Creating both classes in the

com.prenhall.mypackage and in the same Java file.

� Program:

– TestFormatClass.java

Packages

Option 3

� Creating both classes in the

com.prenhall.mypackage and in the different Java

file.

� If you create TestFormatClass class in the same

package with Format, you can invoke the format package with Format, you can invoke the format

method using ClassName.methodName (e.g.,

Format.format).

� Program:

– TestFormatClass.java

– Format.java

Packages

Calling a method from another package

� If you want to call a method from another package,

you can invoke that method in two ways.

– One way is to use the fully qualified name of the class

(option 4) ,

� i.e.: packagename.ClassName.methodNamei.e.: packagename.ClassName.methodName

� This is convenient if the class is used only a few times in the

program.

– The other way is to use the import statement (option 5).

Packages

Option 4

� Creating the TestFormatClass in the default package

and Format class in the com.prenhall.mypackage

package and call it by using the fully qualified name

of the Format class.

� Program:� Program:

– TestFormatClass.java

– Format.java (same as option 3)

Packages

Option 5

� Creating the TestFormatClass in the default package

and Format class in the com.prenhall.mypackage

package and call it by using the import statement.

– TestFormatClass.java

– Format.java (same as option 3)– Format.java (same as option 3)

Packages

Using Classes from Packages

� The program uses an import statement to get the

class Format.

� You can import entire classes by:

import com.prenhall.mypackage.*;

You cannot import entire packages, such as:� You cannot import entire packages, such as:

import com.prenhall.*.*;

� Only one asterisk (*) can be used in an import

statement.

References

Packages

References

� Y. Daniel Liang, Introduction to Java

Programming, Sixth Edition, Pearson Education,

2007. (Chapter 5)

The End

