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Procedural Programming Languages 

� Programming in procedural languages like C, 

Pascal, BASIC, and COBOL involves:

– Choosing data structures,

– Designing algorithms, and 

– Translating algorithms into code. – Translating algorithms into code. 

� In procedural programming, data and 

operations on the data are separate, and this 

methodology requires sending data to 

methods.
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OO Programming Concepts

� Object-oriented programming (OOP) 

involves programming using objects. 

� An object  represents an entity in the real 

world that can be distinctly identified. For 

example:example:

– a student

– a desk

– a circle 

– a button

– a loan
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OO Programming Concepts

� An object has a unique identity, state, and behaviors. 

� State

– The state of an object consists of a set of data 
fields (also known as properties) with their current 

values. values. 

– The state defines the object. 

� Behavior

– The behavior of an object is defined by a set of 

methods. 

– Invoking a method on an object means that you ask 

the object to perform a task. 

– The behavior defines what the object does.



Defining Classes for Objects
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Defining Classes for Objects

� A circle object, for example, has a data field, 

radius, which is the property that characterizes 

a circle. 

� One behavior of a circle is that its area can be 

computed using the method getArea().computed using the method getArea().
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Defining Classes for Objects

� Classes

– are templates or blueprints that define objects of the 

same type

– A class defines what an object's data and methods
will be. will be. 

� An object is an instance of a class. 

� You can create many instances of a class. 

� Instantiation

– Creating an instance is referred to as instantiation. 

� The terms object and instance are often 

interchangeable. 
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Defining Classes for Objects

� This Figure shows a class named Circle and its 

three objects.
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Defining Classes for Objects

� A Java class uses 

– variables to define data fields and 

– methods to define behaviors. 

� Constructors

– A class provides methods of a special type, known – A class provides methods of a special type, known 

as constructors, which are invoked when a new 

object is created. 

– A constructor is a special kind of method. 

– A constructor can perform any action, but 

constructors are designed to perform initializing 

actions, such as initializing the data fields of objects. 
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Defining Classes for Objects

� General form of class declaration:
class MyClass

{ 

// class body: field, constructor, and method declarations 

} 

The class body (the area between the braces) � The class body (the area between the braces) 

contains:

– declarations for the fields that provide the state of 

the class and its objects

– constructors for initializing new objects

– methods to implement the behavior of the class 

and its objects
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Defining Classes for Objects

� An example of the Circle class
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Defining Classes for Objects

� The Circle class does not have a main method 

and therefore cannot be run.

� It is merely a definition used to declare and 

create Circle objects. 

� The illustration of class templates and objects � The illustration of class templates and objects 

in can be standardized using UML (Unified 

Modeling Language) notations.
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UML Class Diagram

� The data field is denoted as:

dataFieldName: dataFieldType

� The constructor is denoted as

ClassName(parameterName: parameterType) 

� The method is denoted as:

methodName(parameterName: parameterType): returnType



Constructors
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Constructors

� Constructors are a special kind of methods that are 

invoked to construct objects.

� The constructor has exactly the same name as the 

defining class. 

� Like regular methods, constructors can be overloaded, 

making it easy to construct objects with different initial making it easy to construct objects with different initial 

data values.
Circle() 

{

}

Circle(double newRadius) 

{  

radius = newRadius;

}
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Constructors

� To construct an object from a class, invoke a 

constructor of the class using the new 

operator, as follows:

new ClassName(arguments);

� For example:

– new Circle() creates an object of the Circle class 

using the first constructor defined in the Circle class

– new Circle(5) creates an object using the second 

constructor defined in the Circle class.
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Default Constructor

� A constructor with no parameters is referred to 

as a no-arg constructor (e.g., Circle()). 

� A class may be declared without 

constructors. 

– In this case, a no-arg constructor with an empty – In this case, a no-arg constructor with an empty 

body is implicitly declared in the class. 

– This constructor, called a default constructor, is 

provided automatically only if no constructors are 

explicitly declared in the class.
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Constructors

� Constructors are a special kind of method, 

with three differences:

– Constructors must have the same name as the 

class itself.

– Constructors do not have a return type—not even – Constructors do not have a return type—not even 

void.

– Constructors are invoked using the new operator 

when an object is created. Constructors play the 

role of initializing objects.



Creating Objects 
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Creating Objects

� To create an object you should:

– Declare an object reference variable

� Any variable of the class type can reference to an instance 
of the class. 

– Create an object

– Assign the object reference to the reference 
variable
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Creating Objects

� To declare an object reference variable, use 

the syntax:

ClassName objectRefVar;

� Example:

Circle myCircle;Circle myCircle;
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Creating Objects

� The variable myCircle can reference a Circle

object. 

� This statement creates an object and assigns 

its reference to myCircle.

myCircle = new Circle();myCircle = new Circle();
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Creating Objects

� You can write one statement that combines 

– the declaration of an object reference variable, 

– the creation of an object, and 

– the assigning of the object reference to the 

variable.variable.

ClassName objectRefVar = new ClassName(); 

� An example:

Circle myCircle = new Circle();
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Creating Objects

� myCircle is not an object but it is a variable that 

contains a reference to a Circle object.

� For simplicity, we say that myCircle is a Circle

object



Accessing an Object's Data and 
Methods 
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Accessing an Object's Data and Methods

� After an object is created, its data can be 

accessed and its methods invoked using the 

dot operator (.), also known as the object 

member access operator.

� To access a data field in the object:� To access a data field in the object:

– objectRefVar.dataField

– e.g., myCircle.radius

� To invoke a method on the object:

– objectRefVar.method(arguments)

– e.g., myCircle.getArea()
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Accessing an Object's Data and Methods

� Instance variable

– The data field radius is referred to as an instance 
variable because it is dependent on a specific 

instance. 

� Instance method� Instance method

– The method getArea is referred to as an instance 
method, because you can only invoke it on a 

specific instance. 

� Calling object

– The object on which an instance method is invoked 

is referred to as a calling object.
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Anonymous Object

� You can create an object without explicitly 

assigning it to a variable, as shown below:

System.out.println("Area is " + new Circle(5).getArea()); 

� This statement creates a Circle object and 

invokes its getArea method to return its area. invokes its getArea method to return its area. 

� An object created in this way is known as an 

anonymous object.



An Example: 
CreatObjectDemo.java
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An example

� An example:

– Point.java

– Rectangle.java

– CreateObjectDemo.java

� Here's the output:� Here's the output:
Width of rectOne: 100 

Height of rectOne: 200 

Area of rectOne: 20000 

X Position of rectTwo: 23 

Y Position of rectTwo: 94 

X Position of rectTwo: 40 

Y Position of rectTwo: 72 
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An example

� The following statement provides 23 and 94 as 

values for Point class arguments: 

Point originOne = new Point(23, 94);

� originOne now points to a Point object. 
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An example

� Rectangle class has different constructors but 

when the Java compiler encounters the 

following code:

Rectangle rectOne = new Rectangle(originOne, 100, 200); 

It knows to invoke the constructor in the � It knows to invoke the constructor in the 

Rectangle class that requires a Point argument 

followed by two integer arguments.

� Now there are two references to the same 

Point object

� An object can have multiple references to it 
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An example

� rectOne now points to a Rectangle object there are two 

references to the same Point object:
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An example

� The following line of code invokes the Rectangle

constructor that requires two integer arguments, which 

provide the initial values for width and height. And it 

creates a new Point object whose x and y values are 

initialized to 0:

Rectangle rectTwo = new Rectangle(50, 100); Rectangle rectTwo = new Rectangle(50, 100); 

� The Rectangle constructor used in the following 

statement doesn't take any arguments, so it's called a 

no-argument constructor:

Rectangle rect = new Rectangle(); 



An Example: TestCircle1.java
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An example

� An example:

– TestCircle1.java

� The program constructs a circle object with 
radius 5 and an object with radius 1 and 

displays the radius and area of each of the two displays the radius and area of each of the two 

circles. 

� Change the radius of the second object to 100

and display its new radius and area
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An example

� The program contains two classes. 

� The first class, TestCircle1, is the main class. 

Its purpose is to test the second class, Circle1. 

� Every time you run the program, the JVM 

invokes the main method in the main class.invokes the main method in the main class.

� You can put the two classes into one file, but 

only one class in the file can be a public 

class.

� Furthermore, the public class must have the 

same name as the file name and the main

method must be in a public class. 
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An example

� To write the getArea method in a procedural 
programming language like Pascal, you would pass 

radius as an argument to the method. 

� But in object-oriented programming, radius and 

getArea are defined in the object.

The radius is a data member in the object, which is � The radius is a data member in the object, which is 

accessible by the getArea method. 

� In procedural programming languages, data and 

methods are separated, but in an object-oriented 
programming language, data and methods are 

grouped together.
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Other way to write the program

� There are many ways to write Java programs. 

� For instance, you can combine the two classes 

in the example into one.

� This demonstrates that you can test a class by 

simply adding a main method in the same simply adding a main method in the same 

class.

� Example:

– Circle1.java
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An example

� Recall that you use Math.methodName(arguments)

(e.g., Math.pow(3, 2.5)) to invoke a method in the Math

class. 

� Can you invoke getArea() using Circle1.getArea()?

� The answer is no. All the methods in the Math class 

are static methods, which are defined using the staticare static methods, which are defined using the static

keyword. 

� However, getArea() is an instance method, and thus 

non-static. 

� It must be invoked from an object using 

objectRefVar.methodName(arguments) (e.g., 

myCircle.getArea()). "



Default Values of Data Fields
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Default Values of Data Fields

� The data fields can be of reference types. 

� For example, the following Student class 

contains a data field name of the String type. 

� name is a reference variable. 

� String is a predefined Java class.
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Default Values of Data Fields

� If a data field of a reference type does not 

reference any object, the data field holds a 

special Java value, null. 

� The default value of a data field is:

– null for a reference type– null for a reference type

– 0 for a numeric type

– false for a boolean type

– '\u0000' for a char type
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Default Values of Data Fields

� An example:

– TestDefaultValue1.java

� The program output:

name? nullname? null

age? 0

isScienceMajor? false

gender? 
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Default Values of Data Fields

� Java assigns no default value to a local 

variable inside a method. 

� The following program has a compilation 

error because local variables x and y are not 

initialized.initialized.

– TestDefaultValue2.java



Differences Between Variables of 
Primitive Types and Reference 

Types
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Differences Between Variables of Primitive Types and 
Reference Types

� Every variable represents a memory location 

that holds a value. 

� When you declare a variable, you are telling 

the compiler what type of value the variable 

can hold. can hold. 

– For a variable of a primitive type, the value is of 

the primitive type. 

– For a variable of a reference type, the value is a 

reference to where an object is located. 



Objects and Classes: Part 1
Differences Between Variables of Primitive Types and 
Reference Types

� The value of int variable i is int value 1, and the 

value of Circle object c holds a reference to 

where the contents of the Circle object are 

stored in the memory.
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Differences Between Variables of Primitive Types and 
Reference Types

� When you assign one variable to another, the 

other variable is set to the same value. 

� For a variable of a primitive type, the real value 

of one variable is assigned to the other 

variable. variable. 
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Differences Between Variables of Primitive Types and 
Reference Types

� For a variable of a reference type, the 

reference of one variable is assigned to the 

other variable.
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Differences Between Variables of Primitive Types and 
Reference Types

� After the assignment statement c1 = c2, c1

points to the same object referenced by c2. 

� The object previously referenced by c1 is no 

longer useful and therefore is now known as 

garbage. garbage. 

� Garbage occupies memory space. 

� The JVM detects garbage and automatically 

reclaims the space it occupies. 

� This process is called garbage collection.



Objects and Classes: Part 1
Differences Between Variables of Primitive Types and 
Reference Types

� If you know that an object is no longer needed, 

you can explicitly assign null to a reference 

variable for the object. 

� The JVM will automatically collect the space if 
the object is not referenced by any variable.the object is not referenced by any variable.



Using Classes from the Java 
Library
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Using Classes from the Java Library

� You will frequently use the classes in the Java 

library to develop programs. 

� This section gives some examples of the 

classes in the Java library.
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The Date Class

� Java provides a system-independent encapsulation of 

date and time in the java.util.Date class. 

� You can use the Date class to create an instance for 

the current date and time and use its toString method 

to return the date and time as a string.
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The Date Class

� For example, the following code

� displays the output like this:
The elapse time since Jan 1, 1970 is 

1100547210284 milliseconds 

Mon Nov 15 14:33:30 EST 2004 
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The Random Class

� You have used Math.random() to obtain a random 

double value between 0.0 and 1.0 (excluding 1.0). 

� A more useful random number generator is provided in 

the java.util.Random class, as shown below:
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The Random Class

� If two Random objects have the same seed, they will 

generate identical sequences of numbers. For 

example, the following code creates two Random

objects with the same seed 3.

� The code generates the same sequence of random int values:

From random1: 734 660 210 581 128 202 549 564 459 961 

From random2: 734 660 210 581 128 202 549 564 459 961 
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The End 


