
17. Objects and Classes
(Part 1)

Java

Fall 2009

Instructor: Dr. Masoud Yaghini

Objects and Classes: Part 1

Outline

� Introduction

� Defining Classes for Objects

� Constructors

� Creating Objects

� Accessing an Object's Data and Methods � Accessing an Object's Data and Methods

� An Example: CreatObjectDemo.java

� An Example: TestCircle1.java

� Default Values of Data Fields

� Differences Between Variables of Primitive Types and

Reference Types

� Using Classes from the Java Library

� References

Introduction

Objects and Classes: Part 1

Procedural Programming Languages

� Programming in procedural languages like C,

Pascal, BASIC, and COBOL involves:

– Choosing data structures,

– Designing algorithms, and

– Translating algorithms into code. – Translating algorithms into code.

� In procedural programming, data and

operations on the data are separate, and this

methodology requires sending data to

methods.

Objects and Classes: Part 1

OO Programming Concepts

� Object-oriented programming (OOP)

involves programming using objects.

� An object represents an entity in the real

world that can be distinctly identified. For

example:example:

– a student

– a desk

– a circle

– a button

– a loan

Objects and Classes: Part 1

OO Programming Concepts

� An object has a unique identity, state, and behaviors.

� State

– The state of an object consists of a set of data
fields (also known as properties) with their current

values. values.

– The state defines the object.

� Behavior

– The behavior of an object is defined by a set of

methods.

– Invoking a method on an object means that you ask

the object to perform a task.

– The behavior defines what the object does.

Defining Classes for Objects

Objects and Classes: Part 1

Defining Classes for Objects

� A circle object, for example, has a data field,

radius, which is the property that characterizes

a circle.

� One behavior of a circle is that its area can be

computed using the method getArea().computed using the method getArea().

Objects and Classes: Part 1

Defining Classes for Objects

� Classes

– are templates or blueprints that define objects of the

same type

– A class defines what an object's data and methods
will be. will be.

� An object is an instance of a class.

� You can create many instances of a class.

� Instantiation

– Creating an instance is referred to as instantiation.

� The terms object and instance are often

interchangeable.

Objects and Classes: Part 1

Defining Classes for Objects

� This Figure shows a class named Circle and its

three objects.

Objects and Classes: Part 1

Defining Classes for Objects

� A Java class uses

– variables to define data fields and

– methods to define behaviors.

� Constructors

– A class provides methods of a special type, known – A class provides methods of a special type, known

as constructors, which are invoked when a new

object is created.

– A constructor is a special kind of method.

– A constructor can perform any action, but

constructors are designed to perform initializing

actions, such as initializing the data fields of objects.

Objects and Classes: Part 1

Defining Classes for Objects

� General form of class declaration:
class MyClass

{

// class body: field, constructor, and method declarations

}

The class body (the area between the braces) � The class body (the area between the braces)

contains:

– declarations for the fields that provide the state of

the class and its objects

– constructors for initializing new objects

– methods to implement the behavior of the class

and its objects

Objects and Classes: Part 1

Defining Classes for Objects

� An example of the Circle class

Objects and Classes: Part 1

Defining Classes for Objects

� The Circle class does not have a main method

and therefore cannot be run.

� It is merely a definition used to declare and

create Circle objects.

� The illustration of class templates and objects � The illustration of class templates and objects

in can be standardized using UML (Unified

Modeling Language) notations.

Objects and Classes: Part 1

UML Class Diagram

� The data field is denoted as:

dataFieldName: dataFieldType

� The constructor is denoted as

ClassName(parameterName: parameterType)

� The method is denoted as:

methodName(parameterName: parameterType): returnType

Constructors

Objects and Classes: Part 1

Constructors

� Constructors are a special kind of methods that are

invoked to construct objects.

� The constructor has exactly the same name as the

defining class.

� Like regular methods, constructors can be overloaded,

making it easy to construct objects with different initial making it easy to construct objects with different initial

data values.
Circle()

{

}

Circle(double newRadius)

{

radius = newRadius;

}

Objects and Classes: Part 1

Constructors

� To construct an object from a class, invoke a

constructor of the class using the new

operator, as follows:

new ClassName(arguments);

� For example:

– new Circle() creates an object of the Circle class

using the first constructor defined in the Circle class

– new Circle(5) creates an object using the second

constructor defined in the Circle class.

Objects and Classes: Part 1

Default Constructor

� A constructor with no parameters is referred to

as a no-arg constructor (e.g., Circle()).

� A class may be declared without

constructors.

– In this case, a no-arg constructor with an empty – In this case, a no-arg constructor with an empty

body is implicitly declared in the class.

– This constructor, called a default constructor, is

provided automatically only if no constructors are

explicitly declared in the class.

Objects and Classes: Part 1

Constructors

� Constructors are a special kind of method,

with three differences:

– Constructors must have the same name as the

class itself.

– Constructors do not have a return type—not even – Constructors do not have a return type—not even

void.

– Constructors are invoked using the new operator

when an object is created. Constructors play the

role of initializing objects.

Creating Objects

Objects and Classes: Part 1

Creating Objects

� To create an object you should:

– Declare an object reference variable

� Any variable of the class type can reference to an instance
of the class.

– Create an object

– Assign the object reference to the reference
variable

Objects and Classes: Part 1

Creating Objects

� To declare an object reference variable, use

the syntax:

ClassName objectRefVar;

� Example:

Circle myCircle;Circle myCircle;

Objects and Classes: Part 1

Creating Objects

� The variable myCircle can reference a Circle

object.

� This statement creates an object and assigns

its reference to myCircle.

myCircle = new Circle();myCircle = new Circle();

Objects and Classes: Part 1

Creating Objects

� You can write one statement that combines

– the declaration of an object reference variable,

– the creation of an object, and

– the assigning of the object reference to the

variable.variable.

ClassName objectRefVar = new ClassName();

� An example:

Circle myCircle = new Circle();

Objects and Classes: Part 1

Creating Objects

� myCircle is not an object but it is a variable that

contains a reference to a Circle object.

� For simplicity, we say that myCircle is a Circle

object

Accessing an Object's Data and
Methods

Objects and Classes: Part 1

Accessing an Object's Data and Methods

� After an object is created, its data can be

accessed and its methods invoked using the

dot operator (.), also known as the object

member access operator.

� To access a data field in the object:� To access a data field in the object:

– objectRefVar.dataField

– e.g., myCircle.radius

� To invoke a method on the object:

– objectRefVar.method(arguments)

– e.g., myCircle.getArea()

Objects and Classes: Part 1

Accessing an Object's Data and Methods

� Instance variable

– The data field radius is referred to as an instance
variable because it is dependent on a specific

instance.

� Instance method� Instance method

– The method getArea is referred to as an instance
method, because you can only invoke it on a

specific instance.

� Calling object

– The object on which an instance method is invoked

is referred to as a calling object.

Objects and Classes: Part 1

Anonymous Object

� You can create an object without explicitly

assigning it to a variable, as shown below:

System.out.println("Area is " + new Circle(5).getArea());

� This statement creates a Circle object and

invokes its getArea method to return its area. invokes its getArea method to return its area.

� An object created in this way is known as an

anonymous object.

An Example:
CreatObjectDemo.java

Objects and Classes: Part 1

An example

� An example:

– Point.java

– Rectangle.java

– CreateObjectDemo.java

� Here's the output:� Here's the output:
Width of rectOne: 100

Height of rectOne: 200

Area of rectOne: 20000

X Position of rectTwo: 23

Y Position of rectTwo: 94

X Position of rectTwo: 40

Y Position of rectTwo: 72

Objects and Classes: Part 1

An example

� The following statement provides 23 and 94 as

values for Point class arguments:

Point originOne = new Point(23, 94);

� originOne now points to a Point object.

Objects and Classes: Part 1

An example

� Rectangle class has different constructors but

when the Java compiler encounters the

following code:

Rectangle rectOne = new Rectangle(originOne, 100, 200);

It knows to invoke the constructor in the � It knows to invoke the constructor in the

Rectangle class that requires a Point argument

followed by two integer arguments.

� Now there are two references to the same

Point object

� An object can have multiple references to it

Objects and Classes: Part 1

An example

� rectOne now points to a Rectangle object there are two

references to the same Point object:

Objects and Classes: Part 1

An example

� The following line of code invokes the Rectangle

constructor that requires two integer arguments, which

provide the initial values for width and height. And it

creates a new Point object whose x and y values are

initialized to 0:

Rectangle rectTwo = new Rectangle(50, 100); Rectangle rectTwo = new Rectangle(50, 100);

� The Rectangle constructor used in the following

statement doesn't take any arguments, so it's called a

no-argument constructor:

Rectangle rect = new Rectangle();

An Example: TestCircle1.java

Objects and Classes: Part 1

An example

� An example:

– TestCircle1.java

� The program constructs a circle object with
radius 5 and an object with radius 1 and

displays the radius and area of each of the two displays the radius and area of each of the two

circles.

� Change the radius of the second object to 100

and display its new radius and area

Objects and Classes: Part 1

An example

� The program contains two classes.

� The first class, TestCircle1, is the main class.

Its purpose is to test the second class, Circle1.

� Every time you run the program, the JVM

invokes the main method in the main class.invokes the main method in the main class.

� You can put the two classes into one file, but

only one class in the file can be a public

class.

� Furthermore, the public class must have the

same name as the file name and the main

method must be in a public class.

Objects and Classes: Part 1

An example

� To write the getArea method in a procedural
programming language like Pascal, you would pass

radius as an argument to the method.

� But in object-oriented programming, radius and

getArea are defined in the object.

The radius is a data member in the object, which is � The radius is a data member in the object, which is

accessible by the getArea method.

� In procedural programming languages, data and

methods are separated, but in an object-oriented
programming language, data and methods are

grouped together.

Objects and Classes: Part 1

Other way to write the program

� There are many ways to write Java programs.

� For instance, you can combine the two classes

in the example into one.

� This demonstrates that you can test a class by

simply adding a main method in the same simply adding a main method in the same

class.

� Example:

– Circle1.java

Objects and Classes: Part 1

An example

� Recall that you use Math.methodName(arguments)

(e.g., Math.pow(3, 2.5)) to invoke a method in the Math

class.

� Can you invoke getArea() using Circle1.getArea()?

� The answer is no. All the methods in the Math class

are static methods, which are defined using the staticare static methods, which are defined using the static

keyword.

� However, getArea() is an instance method, and thus

non-static.

� It must be invoked from an object using

objectRefVar.methodName(arguments) (e.g.,

myCircle.getArea()). "

Default Values of Data Fields

Objects and Classes: Part 1

Default Values of Data Fields

� The data fields can be of reference types.

� For example, the following Student class

contains a data field name of the String type.

� name is a reference variable.

� String is a predefined Java class.

Objects and Classes: Part 1

Default Values of Data Fields

� If a data field of a reference type does not

reference any object, the data field holds a

special Java value, null.

� The default value of a data field is:

– null for a reference type– null for a reference type

– 0 for a numeric type

– false for a boolean type

– '\u0000' for a char type

Objects and Classes: Part 1

Default Values of Data Fields

� An example:

– TestDefaultValue1.java

� The program output:

name? nullname? null

age? 0

isScienceMajor? false

gender?

Objects and Classes: Part 1

Default Values of Data Fields

� Java assigns no default value to a local

variable inside a method.

� The following program has a compilation

error because local variables x and y are not

initialized.initialized.

– TestDefaultValue2.java

Differences Between Variables of
Primitive Types and Reference

Types

Objects and Classes: Part 1
Differences Between Variables of Primitive Types and
Reference Types

� Every variable represents a memory location

that holds a value.

� When you declare a variable, you are telling

the compiler what type of value the variable

can hold. can hold.

– For a variable of a primitive type, the value is of

the primitive type.

– For a variable of a reference type, the value is a

reference to where an object is located.

Objects and Classes: Part 1
Differences Between Variables of Primitive Types and
Reference Types

� The value of int variable i is int value 1, and the

value of Circle object c holds a reference to

where the contents of the Circle object are

stored in the memory.

Objects and Classes: Part 1
Differences Between Variables of Primitive Types and
Reference Types

� When you assign one variable to another, the

other variable is set to the same value.

� For a variable of a primitive type, the real value

of one variable is assigned to the other

variable. variable.

Objects and Classes: Part 1
Differences Between Variables of Primitive Types and
Reference Types

� For a variable of a reference type, the

reference of one variable is assigned to the

other variable.

Objects and Classes: Part 1
Differences Between Variables of Primitive Types and
Reference Types

� After the assignment statement c1 = c2, c1

points to the same object referenced by c2.

� The object previously referenced by c1 is no

longer useful and therefore is now known as

garbage. garbage.

� Garbage occupies memory space.

� The JVM detects garbage and automatically

reclaims the space it occupies.

� This process is called garbage collection.

Objects and Classes: Part 1
Differences Between Variables of Primitive Types and
Reference Types

� If you know that an object is no longer needed,

you can explicitly assign null to a reference

variable for the object.

� The JVM will automatically collect the space if
the object is not referenced by any variable.the object is not referenced by any variable.

Using Classes from the Java
Library

Objects and Classes: Part 1

Using Classes from the Java Library

� You will frequently use the classes in the Java

library to develop programs.

� This section gives some examples of the

classes in the Java library.

Objects and Classes: Part 1

The Date Class

� Java provides a system-independent encapsulation of

date and time in the java.util.Date class.

� You can use the Date class to create an instance for

the current date and time and use its toString method

to return the date and time as a string.

Objects and Classes: Part 1

The Date Class

� For example, the following code

� displays the output like this:
The elapse time since Jan 1, 1970 is

1100547210284 milliseconds

Mon Nov 15 14:33:30 EST 2004

Objects and Classes: Part 1

The Random Class

� You have used Math.random() to obtain a random

double value between 0.0 and 1.0 (excluding 1.0).

� A more useful random number generator is provided in

the java.util.Random class, as shown below:

Objects and Classes: Part 1

The Random Class

� If two Random objects have the same seed, they will

generate identical sequences of numbers. For

example, the following code creates two Random

objects with the same seed 3.

� The code generates the same sequence of random int values:

From random1: 734 660 210 581 128 202 549 564 459 961

From random2: 734 660 210 581 128 202 549 564 459 961

References

Objects and Classes: Part 1

References

� Y. Daniel Liang, Introduction to Java Programming,

Sixth Edition, Pearson Education, 2007. (Chapter 7)

� S. Zakhour, S. Hommel, J. Royal, I. Rabinovitch, T.

Risser, M. Hoeber, The Java Tutorial: A Short
Course on the Basics, 4th Edition, Prentice Hall, Course on the Basics, 4th Edition, Prentice Hall,

2006. (Chapter 4)

The End

