
18. Objects and Classes
(Part 2)

Java

Fall 2009

Instructor: Dr. Masoud Yaghini

Objects and Classes: Part 2

Outline

� Static Variables, Constants, and Methods

� Visibility Modifiers

� Data Field Encapsulation

� Immutable Objects and Classes� Immutable Objects and Classes

� Passing Objects to Methods

� The Scope of Variables

� Array of Objects

� References

Static Variables, Constants, and
Methods

Objects and Classes: Part 2

Instance Variables, and Methods

� Instance (non-static) variables belong to a

specific instance.

� Instance methods are invoked by an instance

of the class.

Objects and Classes: Part 2

Static Variables, Constants, and Methods

� Static variables (Class variable) are shared

by all the instances of the class.

� Static methods are not tied to a specific

object. Static methods can be called without

creating an instance of the class.creating an instance of the class.

� Static constants are final variables shared by

all the instances of the class.

� To declare static variables, constants, and

methods, use the static modifier.

Objects and Classes: Part 2

Static Variables, Constants, and Methods

� Let us modify the Circle class by adding a static

variable numberOfObjects to count the number of circle

objects created and the static method

getNumberOfObjects

Objects and Classes: Part 2

Static Variables, Constants, and Methods

� Constants in a class are shared by all objects

of the class.

� Thus, constants should be declared final static.

� For example, the constant PI in the Math class

is defined as:is defined as:

final static double PI = 3.14159265358979323846;

Objects and Classes: Part 2

TestCircle2.java

� Example:

– Circle2.java

– TestCircle2.java

� The output of the program:

Before creating c2Before creating c2

c1 is : radius (1.0) and number of Circle objects (1)

After creating c2 and modifying c1's radius to 9

c1 is : radius (9.0) and number of Circle objects (2)

c2 is : radius (5.0) and number of Circle objects (2)

Objects and Classes: Part 2

TestCircle2.java

� You can replace Circle2.numberOfObjects by

– c1.numberOfObjects and

– c2.numberOfObjects.

� You can also replace

Circle2.getNumberOfObjects by Circle2.getNumberOfObjects by

– Circle2.getNumberOfObjects().

Objects and Classes: Part 2

Static Variables, Constants, and Methods

� To improve readability use

ClassName.methodName(arguments)

– to invoke a static method and

ClassName.staticVariable

– to use a static variable– to use a static variable

� Because the user can easily recognize the

static method and data in the class.

Objects and Classes: Part 2

Import static variables and methods

� You can import static variables and methods

from a class.

� The imported data and methods can be

referenced or called without specifying a class.

� For example, you can use PI (instead of � For example, you can use PI (instead of

Math.PI), and random() (instead of

Math.random()),

� if you have the following import statement in

the class:

import static java.lang.Math.*;

Objects and Classes: Part 2

Static Variables, Constants, and Methods

� Instance methods can use both:

– Static variables and methods, and

– Instance variables and methods

� Static methods can use only:

– Static variables and methods– Static variables and methods

� Because static variables and methods belong

to the class as a whole and not to particular

objects.

� What is wrong?

– Test1.java

Objects and Classes: Part 2

Static Variables, Constants, and Methods

� How do you decide whether a variable or

method should be an instance one or a static

one?

– A variable or method that is dependent on a specific

instance of the class should be an instance variable instance of the class should be an instance variable

or method, otherwise it should be a static variable or

method.

� None of the methods in the Math class is

dependent on a specific instance. Therefore,

these methods are static methods.

� The main method is static, and can be invoked

directly from a class.

Visibility Modifiers

Objects and Classes: Part 2

Visibility Modifiers

� Java provides several modifiers that control

access to data fields, methods, and classes.

– public: The class, variable, or method is visible to

any class in any package (in a NetBeans project)

– By default (no modifier), the class, variable, or – By default (no modifier), the class, variable, or

method can be accessed by any class in the same

package. This is known as package-private or

package-access.

– private: The data or methods can be accessed only

by the own class.

Objects and Classes: Part 2

Visibility Modifiers

� The private modifier restricts access to within a class

� The default modifier restricts access to within a

package

� The public modifier enables unrestricted access

Objects and Classes: Part 2

Visibility Modifiers

� If a class is not declared public, it can only be

accessed within the same package

Objects and Classes: Part 2

Visibility Modifiers

� An object cannot access its private members,

as shown in (b). It is OK, however, if the object

is declared in its own class, as shown in (a).

Objects and Classes: Part 2

Note

� Visibility modifiers are used for the members of

the class, not local variables inside the

methods.

� Using a visibility modifier on local variables

would cause a compilation error.would cause a compilation error.

Objects and Classes: Part 2

Note

� In most cases, the constructor should be public.

� However, if you want to prohibit the user from creating an
instance of a class, you can use a private constructor.

� For example, there is no reason to create an instance
from the Math class because all of the data fields and
methods are static. methods are static.

– One solution is to define a dummy private constructor in the
class.

– The Math class cannot be instantiated because it has a private
constructor, as follows:

private Math()

{

}

Data Field Encapsulation

Objects and Classes: Part 2

Data Field Encapsulation

� Why Data Fields Should Be private?

� To protect data.
– For example, numberOfObjects is to count the number of

objects created, but it may be set to an arbitrary value (e.g.,
Circle2. numberOfObjects = 10).

� To make class easy to maintain.
– Suppose you want to modify the Circle2 class to ensure that

the radius is non-negative after other programs have already
used the class.

– You have to change not only the Circle2 class, but also the
programs that use the Circle2 class.

– Such programs are often referred to as clients.

Objects and Classes: Part 2

Data Field Encapsulation

� Data field encapsulation

– To prevent direct modifications of properties, you

should declare the field private, using the private

modifier.

– This is known as data field encapsulation.– This is known as data field encapsulation.

� To make a private data field accessible,

provide a get method to return the value of the

data field.

� To enable a private data field to be updated,

provide a set method to set a new value.

Objects and Classes: Part 2

Data Field Encapsulation

� A get method is referred to as a getter (or

accessor), and a set method is referred to as

a setter (or mutator).

� get method has the following signature:� get method has the following signature:

public returnType getPropertyName()

� set method has the following signature:

public void setPropertyName(dataType propertyValue)

Objects and Classes: Part 2

Data Field Encapsulation

� The class diagram to create a new circle class

with a private data field radius and its

associated accessor and mutator methods.

Objects and Classes: Part 2

TestCircle3.java: Demonstrate private modifier

� Example:

– Circle3.java

– TestCircle3.java

� The output:

The area of the circle of radius 5.0 is 78.53981633974483The area of the circle of radius 5.0 is 78.53981633974483

The area of the circle of radius 5.5 is 95.03317777109125

� Note:

– When you compile TestCircle3.java, the Java

compiler automatically compiles Circle3.java if it has

not been compiled since the last change.

Immutable Objects and Classes

Objects and Classes: Part 2

Immutable Objects and Classes

� If the contents of an object cannot be changed

once the object is created, the object is called

an immutable object and its class is called an

immutable class.

� If you delete the set method in the Circle3� If you delete the set method in the Circle3

class in the preceding example, the class

would be immutable because radius is private

and cannot be changed without a set method.

Objects and Classes: Part 2

Immutable Objects and Classes

� A class with all private data fields and no

mutators is not necessarily immutable.

� An example:

– Student.java

– BirthDate.java– BirthDate.java

– TestStudent.java

Objects and Classes: Part 2

What Class is Immutable?

� For a class to be immutable:

– it must mark all data fields private and

– provide no mutator methods and

– no accessor methods that would return a reference

to a mutable data field object.to a mutable data field object.

Passing Objects to Methods

Objects and Classes: Part 2

Passing Objects to Methods

� Like passing an array, passing an object is

actually passing the reference of the object.

� Java uses exactly one mode of passing

arguments: pass-by-value.

Passing by value for primitive type value (the value – Passing by value for primitive type value (the value

is passed to the parameter)

– Passing by value for reference type value (the value

is the reference to the object)

Objects and Classes: Part 2

TestPassObject.java

� Example:

– TestPassObject.java

� The output:

Radius Area

1.0 3.1415926535897931.0 3.141592653589793

2.0 12.566370614359172

3.0 28.274333882308138

4.0 50.26548245743669

5.0 78.53981633974483

Radius is 6.0

n is 5

Objects and Classes: Part 2

Passing Objects to Methods

� The figure shows the call stack for executing

the methods in the program. Note that the

objects are stored in a heap.

The Scope of Variables

Objects and Classes: Part 2

The Scope of Variables

� In Methods chapter, discussed local variables

and their scope rules.

� Local variables are declared and used inside a

method locally.

� This section discusses the scope rules of all � This section discusses the scope rules of all

the variables in the context of a class.

Objects and Classes: Part 2

The Scope of Variables

� Local variables:

– A variable defined inside a method is referred to as

a local variable.

– The scope of a local variable starts from its

declaration and continues to the end of the block declaration and continues to the end of the block

that contains the variable.

– A local variable must be initialized explicitly before it

can be used.

Objects and Classes: Part 2

The Scope of Variables

� Instance and static variables:

– Instance and static variables in a class are referred

to as the class's variables or data fields.

– The scope of a class's variables is the entire class,

regardless of where the variables are declared. regardless of where the variables are declared.

– A class's variables and methods can be declared in

any order in the class

� You can declare a class's variable only once,

but you can declare the same variable name in

a method many times in different non-nesting

blocks.

Objects and Classes: Part 2

The Scope of Variables

� Example:

Objects and Classes: Part 2

The Scope of Variables

� If a local variable has the same name as a

class's variable, the local variable takes

precedence and the class's variable with the

same name is hidden.

� An example:� An example:

– TestScopeOfVariables.java

Objects and Classes: Part 2

The Scope of Variables

� As demonstrated in the example, it is easy to

make mistakes.

� To avoid confusion, do not declare the same

variable name twice in a class, except for

method parameters.method parameters.

Array of Objects

Objects and Classes: Part 2

Array of Objects

� Before arrays of primitive type elements were

created. You can also create arrays of objects.

� The following statement declares and creates

an array of ten Circle objects:

Circle[] circleArray = new Circle[10]; Circle[] circleArray = new Circle[10];

� To initialize the circleArray, you can use a for

loop like this one:

for (int i = 0; i < circleArray.length; i++) {

circleArray[i] = new Circle();

}

Objects and Classes: Part 2

Array of Objects

� An array of objects is actually an array of

reference variables.

� So invoking circleArray[1].getArea() involves

two levels of referencing

Objects and Classes: Part 2

TotalArea.java

� TotalArea program summarizes the areas of an

array of circles.

� The program creates circleArray, an array

composed of ten Circle3 objects

� It then initializes circle radii with random � It then initializes circle radii with random

values, and displays the total area of the

circles in the array.

� Programs:

– Circle3.java

– TotalArea.java

Objects and Classes: Part 2

TotalArea.java

� The output:
Radius Area

58.068804279569896 10593.406541297387

36.33710413653297 4148.112246400217

85.02001103760188 22708.695490093254

99.67002343283416 31208.93821489979799.67002343283416 31208.938214899797

68.99814612628313 14956.318906523336

66.51192311899847 13897.890417494793

79.79530733791314 20003.43485868224

11.2738794456952 399.29755019510003

43.04292750675902 5820.408629351761

43.85596734227498 6042.369260300506

The total areas of circles is 129778.8721152384

References

Objects and Classes: Part 2

References

� Y. Daniel Liang, Introduction to Java Programming,

Sixth Edition, Pearson Education, 2007. (Chapter 7)

� S. Zakhour, S. Hommel, J. Royal, I. Rabinovitch, T.

Risser, M. Hoeber, The Java Tutorial: A Short
Course on the Basics, 4th Edition, Prentice Hall, Course on the Basics, 4th Edition, Prentice Hall,

2006. (Chapter 4)

The End

