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Instance Variables, and Methods
-«

e Instance (nhon-static) variables belong to a
specific instance.

e Instance methods are invoked by an instance
of the class.
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Static Variables, Constants, and Methods
<« 000000000]

e Static variables (Class variable) are shared
by all the instances of the class.

e Static methods are not tied to a specific
object. Static methods can be called without
creating an instance of the class.

e Static constants are final variables shared by
all the instances of the class.

e [0 declare static variables, constants, and
methods, use the static modifier.
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Static Variables, Constants, and Methods
< ]
e Let us modify the Circle class by adding a static
variable numberOfObjects to count the number of circle
objects created and the static method

getNumberOfObjects
instantiat
—— circlel Memory
radius = 1 = | | radius
Cirele numberQfObjects = 2 2
radius: double
number0fObjects: int
m in _'-.2_] numberOfCects
sgetAreal): double istantiste cirelel
LML Motation: radius = & ) addi
# public lrlmi:lhlts. of methods numberOfobiects = 2 — hil .
underling: statsc vanables or methods




Objects and Classes: Part 2

Static Variables, Constants, and Methods
<« 000000000]

e Constants in a class are shared by all objects
of the class.

e Thus, constants should be declared final static.

e For example, the constant Pl in the Math class
Is defined as:

final static double Pl = 3.14159265358979323846;
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TestCircle2.java
-

e Example:
— Circle2.java
- TestCircle2.java
e The output of the program:

Before creating c2
c1is : radius (1.0) and number of Circle objects (1)

After creating c2 and modifying c1's radius to 9
c1 is : radius (9.0) and number of Circle objects (2)
c2 is : radius (5.0) and number of Circle objects (2)
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TestCircle2.java
«-«ec_ V]

e You can replace Circle2.numberOfObjects by

— ¢1.numberOfObjects and

— c2.numberOfObijects.
e You can also replace

Circle2.getNumberOfObjects by

— Circle2.getNumberOfObjects().
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Static Variables, Constants, and Methods
<« 000000000]

e To improve readability use
ClassName.methodName(arguments)
- to invoke a static method and
ClassName.staticVariable
~ to use a static variable

e Because the user can easily recognize the
static method and data in the class.
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Import static variables and methods
-

e You can import static variables and methods
from a class.

e The imported data and methods can be
referenced or called without specifying a class.

e For example, you can use Pl (instead of
Math.Pl), and random() (instead of
Math.random()),

e if you have the following import statement in
the class:

import static java.lang.Math.*;
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Static Variables, Constants, and Methods
<« 000000000]

e Instance methods can use both:
- Static variables and methods, and
— Instance variables and methods

e Static methods can use only:
— Static variables and methods

e Because static variables and methods belong
to the class as a whole and not to particular
objects.

e What is wrong?

- Testl.java
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Static Variables, Constants, and Methods
<« 000000000]

e How do you decide whether a variable or
method should be an instance one or a static
one?

— A variable or method that is dependent on a specific
Instance of the class should be an instance variable
or method, otherwise it should be a static variable or
method.

e None of the methods in the Math class is
dependent on a specific instance. Therefore,
these methods are static methods.

e [he main method is static, and can be invoked
directly from a class.



Visibility Modifiers
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Visibility Modifiers
- ]
e Java provides several modifiers that control
access to data fields, methods, and classes.

— public: The class, variable, or method is visible to
any class in any package (in a NetBeans project)

- By default (no modifier), the class, variable, or
method can be accessed by any class in the same
package. This is known as package-private or
package-access.

— private: The data or methods can be accessed only
by the own class.
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Visibility Modifiers
S

.package pl; . .patkage pe;
public class C1 { public class C2 { -puh'l'ic class (3 {
public int x; void aMethod() { void aMethod() {
int v: €l o = new C1(); Cl o = new C1(};
private int z; Can aCCess O.X; Can ACCESSE O.X;
can access o.y; cannot access o.y;
public wvoid ml(} { canmot access 0.2; CANnoT acCess 0.2
void m2() { can invoke o.ml(); can invoke o.ml{);
can invoke o.m2(); cannot invoke o.m2();
Triuate void m3() { ] cannot invoke o.m3(); ) cannot invoke o.m3():
b H |

e The private modifier restricts access to within a class

e [he default modifier restricts access to within a
package

e The public modifier enables unrestricted access



Objects and Classes: Part 2

Visibility Modifiers
|
e If a class is not declared public, it can only be

accessed within the same package

package pl; package p2;
class Cl { | |public class C2 { public class C3 {
. can access (1l cannot access Cl;
} } can access (C2:
}
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Visibility Modifiers
|
e An object cannot access its private members,
as shown in (b). It is OK, however, if the object

IS declared in its own class, as shown in (a).

.puhlic class Foo { . public class Test {
private boolean x; public static void main(S5tring[] args) {
Foo foo = new Foo();
public static void main(String[] args) { System.out.printin(foo.x);
Foo foo = mew Fool(); System.out.printin{fod.convert());
System.out.printIn{foo.x); } ;
System,out. printin(foo.convert()); } i
rd
s
private int convert() { ;".
: return % 7 1 : -1;
; ,.-*/r

(@) This s OK because object Foo s used inside the Foo dass (b)) Thisis v-wnz I.'h.r.ﬂuu. X and convert are pnvate in Foo.



Objects and Classes: Part 2

Note
-_ ]

e Visibility modifiers are used for the members of
the class, not local variables inside the
methods.

e Using a visibility modifier on local variables
would cause a compilation error.
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Note
-_ ]

e In most cases, the constructor should be pubilic.

e However, if you want to prohibit the user from creating an
iInstance of a class, you can use a private constructor.

e For example, there is no reason to create an instance
from the Math class because all of the data fields and
methods are static.

— One solution is to define a dummy private constructor in the
class.

- The Math class cannot be instantiated because it has a private
constructor, as follows:

private Math()

{
}



Data Field Encapsulation
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Data Field Encapsulation
-« /]

e Why Data Fields Should Be private?

e To protect data.

— For example, numberOfObijects is to count the number of
objects created, but it may be set to an arbitrary value (e.g.,
Circle2. numberOfObjects = 10).

e To make class easy to maintain.

— Suppose you want to modify the Circle2 class to ensure that
the radius is non-negative after other programs have already
used the class.

— You have to change not only the Circle2 class, but also the
programs that use the Circle2 class.

— Such programs are often referred to as clients.
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Data Field Encapsulation
-« /]

e Data field encapsulation

— To prevent direct modifications of properties, you
should declare the field private, using the private
modifier.

- This is known as gata field encapsulation.

e To make a private data field accessible,
provide a get method to return the value of the
data field.

e To enable a private data field to be updated,
provide a set method to set a new value.
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Data Field Encapsulation
-« /]

e A get method is referred to as a getter (or
accessor), and a set method is referred to as
a setter (or mutator).

e get method has the following signature:
public returnType getPropertyName()

e set method has the following signature:
public void setPropertyName(dataType propertyValue)
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Data Field Encapsulation
|
e The class diagram to create a new circle class

with a private data field radius and its
associated accessor and mutator methods.

The - sign indicales

private modifier = =-radius: double The radius of this circle (defaalt: 1O}
-numberffObiects: int e number of circle objpects created
+Circlel) Constructs a defoult circle object.
+Lircle(radius: double) Constructs a cincle obgect with the specilied radius.
+getRadivs(): double Returns the radius of this circle.
+setRadius{radius: double): void Scis a new radius for this circle.
+getNumberOfObject(): int Returns ihe number of circle objects created,
+getAreal): double Returns the area of this arcle.
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TestCircle3.java: Demonstrate private modifier

e Example:
- Circle3.java
— TestCircle3.java

e [he output:
The area of the circle of radius 5.0 is 78.53981633974483
The area of the circle of radius 5.5 is 95.03317777109125

e Note:

-~ When you compile TestCircle3.java, the Java
compiler automatically compiles Circle3.java if it has
not been compiled since the last change.




Immutable Objects and Classes
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Immutable Objects and Classes
7

e If the contents of an object cannot be changed
once the object is created, the object is called
an immutable object and its class is called an
immutable class.

e If you delete the set method in the Circle3
class in the preceding example, the class
would be immutable because radius is private
and cannot be changed without a set method.
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Immutable Objects and Classes
7

e A class with all private data fields and no
mutators is not necessarily immutable.
e An example:
- Student.java
- BirthDate.java
- TestStudent.java
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What Class is Immutable?

e [or a class to be immutable:
— It must mark all data fields private and

— provide no mutator methods and

-~ no accessor methods that would return a reference
to a mutable data field object.



Passing Objects to Methods
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Passing Objects to Methods
-

e Like passing an array, passing an object is
actually passing the reference of the object.

e Java uses exactly one mode of passing
arguments: pass-by-value.

— Passing by value for primitive type value (the value
IS passed to the parameter)

- Passing by value for reference type value (the value
IS the reference to the object)
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TestPassObject.java
SESSSSSSL———————

e Example:
- TestPassObiject.java

e [he output:

Radius Area

1.0 3.141592653589793
2.0 12.566370614359172
3.0 28.274333882308138
4.0 50.26548245743669
5.0 78.53981633974483
Radius is 6.0

nisb
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Passing Objects to Methods

e The figure shows the call stack for executing
the methods in the program. Note that the
objects are stored in a heap.

Stack

Space required for the

printAreas method
int times:; 5<A—=—-
Circle ¢ | reference

Space required for the
main method

reference

myCircle:

Pass by value (here
the value 15 5)

)

/ Pass by value
- —f - (here the value 1s
S the reference for

the object)

Heap

A Circle
object
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The Scope of Variables
o

e In Methods chapter, discussed local variables
and their scope rules.

e Local variables are declared and used inside a
method locally.

e This section discusses the scope rules of all
the variables in the context of a class.
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The Scope of Variables
o

e Local variables:

-~ A variable defined inside a method is referred to as
a local variable.

— The scope of a local variable starts from its
declaration and continues to the end of the block
that contains the variable.

— Alocal variable must be initialized explicitly before it
can be used.
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The Scope of Variables
o

e Instance and static variables:

— Instance and static variables in a class are referred
to as the class's variables or data fields.

— The scope of a class's variables is the entire class,
regardless of where the variables are declared.

-~ A class's variables and methods can be declared in
any order in the class

e You can declare a class's variable only once,
but you can declare the same variable name in
a method many times in different non-nesting

blocks.
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The Scope of Variables
S —

e Example:

public class Circle { public class Foo {
public double find getArea() { private int i;
return radius * radius * Math.PI; private int j = i + 1;
h 1
private double radius = 1;
}
(a) variable radius and method getAreal) can be declared (b)) 1 has 1o be declared before § because

in any order 1’5 initial value is dependent on 1,
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The Scope of Variables
7

e |f a local variable has the same name as a
class's variable, the local variable takes
precedence and the class's variable with the
same name is hidden.

e An example:
- TestScopeOfVariables.java
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The Scope of Variables
o

e As demonstrated in the example, it is easy to
make mistakes.

e o avoid confusion, do not declare the same
variable name twice in a class, except for
method parameters.



Array of Objects
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Array of Objects
— —

e Before arrays of primitive type elements were
created. You can also create arrays of objects.

e The following statement declares and creates
an array of ten Circle objects:
Circle[ ] circleArray = new Circle[10];

e To initialize the circleArray, you can use a for
loop like this one:
for (inti=0;1 < circleArray.length; i++) {
circleArray[i] = new Circle();
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Array of Objects
— —

e An array of objects is actually an array of
reference variables.

e So invoking circleArray[1].getArea() involves
two levels of referencing

circleArray reﬂ:rﬂl—» circleArray[0]

circleArray[1]

Circle object () |

— (Circle object 1

circleArray[9] Circle object 9
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TotalArea.java
< / |/

e TotalArea program summarizes the areas of an
array of circles.

e The program creates circleArray, an array
composed of ten Circle3 objects

e |t then initializes circle radii with random
values, and displays the total area of the
circles in the array.

e Programs:
— Circle3.java
-~ TotalArea.java
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TotalArea.java
< / |/

e [he output:

Radius Area
58.068804279569896 10593.406541297387
36.33710413653297 4148.112246400217
85.02001103760188 22708.695490093254
99.67002343283416 31208.938214899797
68.99814612628313 14956.318906523336
66.51192311899847 13897.890417494793
79.79530733791314 20003.43485868224
11.2738794456952 399.29755019510003
43.04292750675902 5820.408629351761
43.85596734227498 6042.369260300506

The total areas of circlesis 129778.8721152384
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