18. Objects and Classes
(Part 2)

Fall 2009
Instructor: Dr. Masoud Yaghini

Objects and Classes: Part 2

Outline
-]

e Static Variables, Constants, and Methods
Visibility Modifiers

Data Field Encapsulation

mmutable Objects and Classes

Passing Objects to Methods

e The Scope of Variables

e Array of Objects

e References

Static Variables, Constants, and
Methods

Objects and Classes: Part 2

Instance Variables, and Methods
-«

e Instance (nhon-static) variables belong to a
specific instance.

e Instance methods are invoked by an instance
of the class.

Objects and Classes: Part 2

Static Variables, Constants, and Methods
<« 000000000]

e Static variables (Class variable) are shared
by all the instances of the class.

e Static methods are not tied to a specific
object. Static methods can be called without
creating an instance of the class.

e Static constants are final variables shared by
all the instances of the class.

e [0 declare static variables, constants, and
methods, use the static modifier.

Objects and Classes: Part 2

Static Variables, Constants, and Methods
<]
e Let us modify the Circle class by adding a static
variable numberOfObjects to count the number of circle
objects created and the static method

getNumberOfObjects
instantiat
—— circlel Memory
radius = 1 = | | radius
Cirele numberQfObjects = 2 2
radius: double
number0fObjects: int
m in _'-.2_] numberOfCects
sgetAreal): double istantiste cirelel
LML Motation: radius = &) addi
public lrlmi:lhlts. of methods numberOfobiects = 2 — hil .
underling: statsc vanables or methods

Objects and Classes: Part 2

Static Variables, Constants, and Methods
<« 000000000]

e Constants in a class are shared by all objects
of the class.

e Thus, constants should be declared final static.

e For example, the constant Pl in the Math class
Is defined as:

final static double Pl = 3.14159265358979323846;

Objects and Classes: Part 2

TestCircle2.java
-

e Example:
— Circle2.java
- TestCircle2.java
e The output of the program:

Before creating c2
c1is : radius (1.0) and number of Circle objects (1)

After creating c2 and modifying c1's radius to 9
c1 is : radius (9.0) and number of Circle objects (2)
c2 is : radius (5.0) and number of Circle objects (2)

Objects and Classes: Part 2
TestCircle2.java
«-«ec_ V]

e You can replace Circle2.numberOfObjects by

— ¢1.numberOfObjects and

— c2.numberOfObijects.
e You can also replace

Circle2.getNumberOfObjects by

— Circle2.getNumberOfObjects().

Objects and Classes: Part 2

Static Variables, Constants, and Methods
<« 000000000]

e To improve readability use
ClassName.methodName(arguments)
- to invoke a static method and
ClassName.staticVariable
~ to use a static variable

e Because the user can easily recognize the
static method and data in the class.

Objects and Classes: Part 2

Import static variables and methods
-

e You can import static variables and methods
from a class.

e The imported data and methods can be
referenced or called without specifying a class.

e For example, you can use Pl (instead of
Math.Pl), and random() (instead of
Math.random()),

e if you have the following import statement in
the class:

import static java.lang.Math.*;

Objects and Classes: Part 2

Static Variables, Constants, and Methods
<« 000000000]

e Instance methods can use both:
- Static variables and methods, and
— Instance variables and methods

e Static methods can use only:
— Static variables and methods

e Because static variables and methods belong
to the class as a whole and not to particular
objects.

e What is wrong?

- Testl.java

Objects and Classes: Part 2

Static Variables, Constants, and Methods
<« 000000000]

e How do you decide whether a variable or
method should be an instance one or a static
one?

— A variable or method that is dependent on a specific
Instance of the class should be an instance variable
or method, otherwise it should be a static variable or
method.

e None of the methods in the Math class is
dependent on a specific instance. Therefore,
these methods are static methods.

e [he main method is static, and can be invoked
directly from a class.

Visibility Modifiers

Objects and Classes: Part 2

Visibility Modifiers
-]
e Java provides several modifiers that control
access to data fields, methods, and classes.

— public: The class, variable, or method is visible to
any class in any package (in a NetBeans project)

- By default (no modifier), the class, variable, or
method can be accessed by any class in the same
package. This is known as package-private or
package-access.

— private: The data or methods can be accessed only
by the own class.

Objects and Classes: Part 2

Visibility Modifiers
S

.package pl; . .patkage pe;
public class C1 { public class C2 { -puh'l'ic class (3 {
public int x; void aMethod() { void aMethod() {
int v: €l o = new C1(); Cl o = new C1(};
private int z; Can aCCess O.X; Can ACCESSE O.X;
can access o.y; cannot access o.y;
public wvoid ml(} { canmot access 0.2; CANnoT acCess 0.2
void m2() { can invoke o.ml(); can invoke o.ml{);
can invoke o.m2(); cannot invoke o.m2();
Triuate void m3() {] cannot invoke o.m3();) cannot invoke o.m3():
b H |

e The private modifier restricts access to within a class

e [he default modifier restricts access to within a
package

e The public modifier enables unrestricted access

Objects and Classes: Part 2

Visibility Modifiers
|
e If a class is not declared public, it can only be

accessed within the same package

package pl; package p2;
class Cl { | |public class C2 { public class C3 {
. can access (1l cannot access Cl;
} } can access (C2:
}

Objects and Classes: Part 2

Visibility Modifiers
|
e An object cannot access its private members,
as shown in (b). It is OK, however, if the object

IS declared in its own class, as shown in (a).

.puhlic class Foo { . public class Test {
private boolean x; public static void main(S5tring[] args) {
Foo foo = new Foo();
public static void main(String[] args) { System.out.printin(foo.x);
Foo foo = mew Fool(); System.out.printin{fod.convert());
System.out.printIn{foo.x); } ;
System,out. printin(foo.convert()); } i
rd
s
private int convert() { ;".
: return % 7 1 : -1;
; ,.-*/r

(@) This s OK because object Foo s used inside the Foo dass (b)) Thisis v-wnz I.'h.r.ﬂuu. X and convert are pnvate in Foo.

Objects and Classes: Part 2

Note
-_]

e Visibility modifiers are used for the members of
the class, not local variables inside the
methods.

e Using a visibility modifier on local variables
would cause a compilation error.

Objects and Classes: Part 2

Note
-_]

e In most cases, the constructor should be pubilic.

e However, if you want to prohibit the user from creating an
iInstance of a class, you can use a private constructor.

e For example, there is no reason to create an instance
from the Math class because all of the data fields and
methods are static.

— One solution is to define a dummy private constructor in the
class.

- The Math class cannot be instantiated because it has a private
constructor, as follows:

private Math()

{
}

Data Field Encapsulation

Objects and Classes: Part 2

Data Field Encapsulation
-« /]

e Why Data Fields Should Be private?

e To protect data.

— For example, numberOfObijects is to count the number of
objects created, but it may be set to an arbitrary value (e.g.,
Circle2. numberOfObjects = 10).

e To make class easy to maintain.

— Suppose you want to modify the Circle2 class to ensure that
the radius is non-negative after other programs have already
used the class.

— You have to change not only the Circle2 class, but also the
programs that use the Circle2 class.

— Such programs are often referred to as clients.

Objects and Classes: Part 2

Data Field Encapsulation
-« /]

e Data field encapsulation

— To prevent direct modifications of properties, you
should declare the field private, using the private
modifier.

- This is known as gata field encapsulation.

e To make a private data field accessible,
provide a get method to return the value of the
data field.

e To enable a private data field to be updated,
provide a set method to set a new value.

Objects and Classes: Part 2

Data Field Encapsulation
-« /]

e A get method is referred to as a getter (or
accessor), and a set method is referred to as
a setter (or mutator).

e get method has the following signature:
public returnType getPropertyName()

e set method has the following signature:
public void setPropertyName(dataType propertyValue)

Objects and Classes: Part 2

Data Field Encapsulation
|
e The class diagram to create a new circle class

with a private data field radius and its
associated accessor and mutator methods.

The - sign indicales

private modifier = =-radius: double The radius of this circle (defaalt: 1O}
-numberffObiects: int e number of circle objpects created
+Circlel) Constructs a defoult circle object.
+Lircle(radius: double) Constructs a cincle obgect with the specilied radius.
+getRadivs(): double Returns the radius of this circle.
+setRadius{radius: double): void Scis a new radius for this circle.
+getNumberOfObject(): int Returns ihe number of circle objects created,
+getAreal): double Returns the area of this arcle.

Objects and Classes: Part 2

TestCircle3.java: Demonstrate private modifier

e Example:
- Circle3.java
— TestCircle3.java

e [he output:
The area of the circle of radius 5.0 is 78.53981633974483
The area of the circle of radius 5.5 is 95.03317777109125

e Note:

-~ When you compile TestCircle3.java, the Java
compiler automatically compiles Circle3.java if it has
not been compiled since the last change.

Immutable Objects and Classes

Objects and Classes: Part 2

Immutable Objects and Classes
7

e If the contents of an object cannot be changed
once the object is created, the object is called
an immutable object and its class is called an
immutable class.

e If you delete the set method in the Circle3
class in the preceding example, the class
would be immutable because radius is private
and cannot be changed without a set method.

Objects and Classes: Part 2

Immutable Objects and Classes
7

e A class with all private data fields and no
mutators is not necessarily immutable.
e An example:
- Student.java
- BirthDate.java
- TestStudent.java

Objects and Classes: Part 2
What Class is Immutable?

e [or a class to be immutable:
— It must mark all data fields private and

— provide no mutator methods and

-~ no accessor methods that would return a reference
to a mutable data field object.

Passing Objects to Methods

Objects and Classes: Part 2

Passing Objects to Methods
-

e Like passing an array, passing an object is
actually passing the reference of the object.

e Java uses exactly one mode of passing
arguments: pass-by-value.

— Passing by value for primitive type value (the value
IS passed to the parameter)

- Passing by value for reference type value (the value
IS the reference to the object)

Objects and Classes: Part 2

TestPassObject.java
SESSSSSSL———————

e Example:
- TestPassObiject.java

e [he output:

Radius Area

1.0 3.141592653589793
2.0 12.566370614359172
3.0 28.274333882308138
4.0 50.26548245743669
5.0 78.53981633974483
Radius is 6.0

nisb

Objects and Classes: Part 2
Passing Objects to Methods

e The figure shows the call stack for executing
the methods in the program. Note that the
objects are stored in a heap.

Stack

Space required for the

printAreas method
int times:; 5<A—=—-
Circle ¢ | reference

Space required for the
main method

reference

myCircle:

Pass by value (here
the value 15 5)

)

/ Pass by value
- —f - (here the value 1s
S the reference for

the object)

Heap

A Circle
object

The Scope of Variables

Objects and Classes: Part 2

The Scope of Variables
o

e In Methods chapter, discussed local variables
and their scope rules.

e Local variables are declared and used inside a
method locally.

e This section discusses the scope rules of all
the variables in the context of a class.

Objects and Classes: Part 2

The Scope of Variables
o

e Local variables:

-~ A variable defined inside a method is referred to as
a local variable.

— The scope of a local variable starts from its
declaration and continues to the end of the block
that contains the variable.

— Alocal variable must be initialized explicitly before it
can be used.

Objects and Classes: Part 2

The Scope of Variables
o

e Instance and static variables:

— Instance and static variables in a class are referred
to as the class's variables or data fields.

— The scope of a class's variables is the entire class,
regardless of where the variables are declared.

-~ A class's variables and methods can be declared in
any order in the class

e You can declare a class's variable only once,
but you can declare the same variable name in
a method many times in different non-nesting

blocks.

Objects and Classes: Part 2

The Scope of Variables
S —

e Example:

public class Circle { public class Foo {
public double find getArea() { private int i;
return radius * radius * Math.PI; private int j = i + 1;
h 1
private double radius = 1;
}
(a) variable radius and method getAreal) can be declared (b)) 1 has 1o be declared before § because

in any order 1’5 initial value is dependent on 1,

Objects and Classes: Part 2

The Scope of Variables
7

e |f a local variable has the same name as a
class's variable, the local variable takes
precedence and the class's variable with the
same name is hidden.

e An example:
- TestScopeOfVariables.java

Objects and Classes: Part 2

The Scope of Variables
o

e As demonstrated in the example, it is easy to
make mistakes.

e o avoid confusion, do not declare the same
variable name twice in a class, except for
method parameters.

Array of Objects

Objects and Classes: Part 2

Array of Objects
— —

e Before arrays of primitive type elements were
created. You can also create arrays of objects.

e The following statement declares and creates
an array of ten Circle objects:
Circle[] circleArray = new Circle[10];

e To initialize the circleArray, you can use a for
loop like this one:
for (inti=0;1 < circleArray.length; i++) {
circleArray[i] = new Circle();

Objects and Classes: Part 2

Array of Objects
— —

e An array of objects is actually an array of
reference variables.

e So invoking circleArray[1].getArea() involves
two levels of referencing

circleArray reﬂ:rﬂl—» circleArray[0]

circleArray[1]

Circle object () |

— (Circle object 1

circleArray[9] Circle object 9

Objects and Classes: Part 2

TotalArea.java
< / |/

e TotalArea program summarizes the areas of an
array of circles.

e The program creates circleArray, an array
composed of ten Circle3 objects

e |t then initializes circle radii with random
values, and displays the total area of the
circles in the array.

e Programs:
— Circle3.java
-~ TotalArea.java

Objects and Classes: Part 2

TotalArea.java
< / |/

e [he output:

Radius Area
58.068804279569896 10593.406541297387
36.33710413653297 4148.112246400217
85.02001103760188 22708.695490093254
99.67002343283416 31208.938214899797
68.99814612628313 14956.318906523336
66.51192311899847 13897.890417494793
79.79530733791314 20003.43485868224
11.2738794456952 399.29755019510003
43.04292750675902 5820.408629351761
43.85596734227498 6042.369260300506

The total areas of circlesis 129778.8721152384

References

Objects and Classes: Part 2

References
a]

e Y. Daniel Liang, Introduction to Java Programming,
Sixth Edition, Pearson Education, 2007. (Chapter 7)

e S. Zakhour, S. Hommel, J. Royal, I. Rabinovitch, T.
Risser, M. Hoeber, The Java Tutorial: A Short
Course on the Basics, 4th Edition, Prentice Hall,
2006. (Chapter 4)

