
21. Text I/O

Java

Fall 2009

Instructor: Dr. Masoud Yaghini

Text I/O

Outline

� File Class

� Writing Data Using PrintWriter

� Reading Data Using Scanner

� Example: Replacing Text� Example: Replacing Text

� References

File Class

Text I/O

File Class

� Data stored in variables, arrays, and objects is

temporary and is lost when the program

terminates.

� To permanently store the data created in a

program, you need to save them in a file on a program, you need to save them in a file on a

disk.

� The file can be transported and can be read

later by other programs.

Text I/O

File Class

� Every file is placed in a directory in the file

system.

� Absolute file name

– contains a file name with its complete path and drive

letter. letter.

– For example, c:\book\Welcome.java is the absolute

file name for the file Welcome.java

– Here c:\book is referred to as the directory path for

the file.

Text I/O

File Class

� java.io.File

– a class that helps you that examines and

manipulates files and directories.

� The File class does not contain the methods

for reading and writing file contents.for reading and writing file contents.

� File instances represent file names, not files.

� The file corresponding to the file name might

not even exist.

Text I/O

File Class

� Why create a File object for a file that doesn't

exist?

– The file can be created by passing the File object to

the constructor of some classes, such as FileWriter.

� If the file does exist, a program can examine � If the file does exist, a program can examine

its attributes and perform various operations on

the file, such as renaming it, deleting it, or

changing its permissions.

Text I/O

File Class

� For example:

File a = new File(“test.dat");

� creates a File object for the file test.dat

File a = new File("c:\\book")

� creates a File object for the directory c:\book� creates a File object for the directory c:\book

File a = new File("c:\\book\\test.dat")

� creates a File object for the file c:\\book\\test.dat

Text I/O

File Class Methods

� exists(): boolean

– Returns true if the file or the directory represented by the File
object exists.

� isDirectory(): boolean

– Returns true if the File object represents a directory.

� isFile(): boolean� isFile(): boolean

– Returns true if the File object represents a file.

� isAbsolute(): boolean

– Returns true if the File object is created using an absolute path
name.

� canRead(): boolean

– Returns true if the file represented by the File object exists and
can be read.

Text I/O

File Class Methods

� isHidden(): boolean

– Returns true if the file represented in the File object is hidden.

� lastModified(): long

– Returns the time that file was last modified, measured in
milliseconds since the time (00:00:00 GMT, January 1, 1970).

� getAbsolutePath(): String� getAbsolutePath(): String

– Returns the complete absolute file or directory name
represented by the File object.

Text I/O

TestFileClass.java

� Example:

– TestFileClass.java

� The output:
Does it exist? true

Can it be read? trueCan it be read? true

Can it be written? true

Is it a directory? false

Is it a file? true

Is it absolute? true

Is it hidden? false

Absolute path is d:\Test\test.dat

Last modified on Sat Sep 20 01:11:54 IRDT 2008

Writing Data Using PrintWriter
Class

Text I/O

Text I/O

� A File object encapsulates the properties of a

file or a path, but does not contain the methods

for reading/writing data from/to a file.

� In order to perform I/O, you need to create

objects using appropriate Java I/O classes. objects using appropriate Java I/O classes.

� The objects contain the methods for

reading/writing data from/to a file.

� This section introduces how to write strings

and numeric values to a text file using the

PrintWriter class.

Text I/O

Writing Data Using PrintWriter

� The java.io.PrintWriter class can be used to

write data to a text file.

� First, you have to create a PrintWriter object for

a text file as follows:

PrintWriter output = new PrintWriter(filename); PrintWriter output = new PrintWriter(filename);

� Then, you can invoke the print, println, and

printf methods on the PrintWriter object to write

data to a file.

Text I/O

PrintWriter Methods

� PrintWriter(file: File)
– Creates a PrintWriter object for the specified file.

� print(s: String): void
– Writes a string.

� print(c: char): void
Writes a character.– Writes a character.

� print(cArray: char[]): void
– Writes an array of character.

� print(i: int): void
– Writes an int value.

� print(l: long): void
– Writes a long value.

Text I/O

PrintWriter Methods

� print(f: float): void
– Writes a float value.

� print(d: double): void
– Writes a double value.

� print(b: boolean): void
Writes a boolean value.– Writes a boolean value.

� close(): void
– Close the file

� Also contains the overloaded println & printf methods.

� A println method acts like a print method; additionally it

prints a line separator.

Text I/O

WriteData.java

� This program gives an example that creates an

instance of PrintWriter and writes two lines to

the file "scores.txt".

� Each line consists of first name (a string),

middle name initial (a character), last name (a middle name initial (a character), last name (a

string), and score (an integer).

� Program:

– WriteData.java

Text I/O

WriteData.java

� Invoking the constructor new PrintWriter(String

filename) may throw an I/O exception. For

example if the filename exists.

� Java forces you to write the code to deal with

this type of exception. this type of exception.

� For now, simply declare throws Exception in

the method declaration

� You will learn how to handle exceptions (run

time errors) later.

Text I/O

WriteData.java

� The content of scores.txt:

John T Smith 90

Eric K Jones 85

Reading Data Using Scanner

Text I/O

Reading Data Using Scanner

� The java.util.Scanner class is used to read

from a file

� To create a Scanner to read data from a file,

you have to use the java.io.File class to create

an instance of the File using the constructor an instance of the File using the constructor

new File(filename)

� Then use new Scanner (File) to create a

Scanner for the file as follows:

Scanner input = new Scanner(new File(filename));

Text I/O

Scanner Methods

� Scanner(source: File)

– Creates a Scanner that produces values scanned from the
specified file.

� close()

– Closes this scanner.

� hasNext(): boolean� hasNext(): boolean

– Returns true if this scanner has another token in its input.

� next(): String

– Returns next token as a string.

� nextByte(): byte

– Returns next token as a byte.

Text I/O

Scanner Methods

� nextShort(): short

– Returns next token as a short.

� nextInt(): int

– Returns next token as an int.

� nextLong(): long

– Returns next token as a long.

� nextFloat(): float

– Returns next token as a float.

� nextDouble(): double

– Returns next token as a double.

Text I/O

ReadData.java

� Invoking the constructor new Scanner(File)

may throw an I/O exception. So the main

method declares throws Exception

� The program:

– ReadData.java– ReadData.java

� The output:

John T Smith 90

Eric K Jones 85

Text I/O

Reading Data Using Scanner

� useDelimiter(pattern: String): Scanner

– Sets this scanner’s delimiting pattern.

– By default, the delimiters for separating tokens in a

Scanner are whitespace.

– You can use the useDelimiter(String) method to set – You can use the useDelimiter(String) method to set

a new pattern for delimiters.

Example: Replacing Text

Text I/O

Example: ReplacingText.java

� Write a method named replaceText that

replaces a string in a text file with a new string.

� The filename and strings are passed as

arguments as follows:
replaceText (sourceFile, targetFile, oldString, newString)replaceText (sourceFile, targetFile, oldString, newString)

� The program:

– ReplacingText.java

� The content of scoresNew.txt:

John T Smith 90

Eric K Keaton 85

References

Text I/O

References

� Y. Daniel Liang, Introduction to Java

Programming, Sixth Edition,

Pearson Education, 2007. (Chapter 8)

The End

