
24. Inheritance

Java

Fall 2009

Instructor: Dr. Masoud Yaghini



Inheritance

Outline

� Superclasses and Subclasses

� Using the super Keyword

� Overriding Methods

� The Object Class� The Object Class

� References



Superclasses and Subclasses



Inheritance

Inheritance

� Object-oriented programming allows you to 

derive new classes from existing classes. 

� This is called inheritance. 

� Inheritance is an important and powerful 

concept in Java. concept in Java. 

� In fact, every class you define in Java is 

inherited from an existing class, either explicitly 

or implicitly. 

� The classes you created in the preceding 

chapters were all extended implicitly from the 

java.lang.Object class.



Inheritance

Superclasses and Subclasses

� Subclass

– A class C1 is extended from another class C2 is 

called a subclass, 

– It is also referred to as a subtype, a child class, an 

extended class, or a derived class. extended class, or a derived class. 

� Superclass

– Class C2 is called a superclass

– It is also referred to as a supertype, a parent 
class, or a base class

� A subclass inherits accessible data fields and 

methods from its superclass, and may also add 

new data fields and methods.



Inheritance

Superclasses and Subclasses

� Suppose you want to design the classes to model 

geometric objects like circles and rectangles. 

� Geometric objects have many common properties such 

as:

– color

filled or unfilled– filled or unfilled

– Date created

� And behaviors:

– Can be drawn in a certain color 

– filled or unfilled methods

– get and set methods

– getDateCreated()

– toString() method returns a string representation for the object



Inheritance

Superclasses and Subclasses



Inheritance

Superclasses and Subclasses

� The Circle class inherits all accessible data 

fields and methods from the GeometricObject

class.

� In addition, it has a new data field, radius, and 

its associated get and set methods. its associated get and set methods. 

� It also contains the getArea(), getPerimeter(), 

and getDiameter() methods for returning the 

area, perimeter, and diameter of the circle.



Inheritance

Superclasses and Subclasses

� The programs:

– GeometricObject.java

– Circle.java

– Rectangle.java

– TestCircleRectangle.java– TestCircleRectangle.java



Inheritance

TestCircleRectangle.java

� Output:
A circle created on Tue Sep 30 22:55:31 IRST 2008

color: white and filled: false

1.0

The radius is 1.0

The area is 3.141592653589793The area is 3.141592653589793

The diameter is 2.0

A rectangle created on Tue Sep 30 22:55:32 IRST 2008

color: white and filled: false

The area is 8.0

The perimeter is 12.0



Inheritance

Superclasses and Subclasses

� The classes Circle and Rectangle extend the 

GeometricObject class.

� The reserved word extends tells the compiler 

that these classes extend the GeometricObject

class, thus inheriting the methods getColor, class, thus inheriting the methods getColor, 

setColor, isFilled, setFilled, and toString.



Inheritance

Superclasses and Subclasses

� Contrary to the conventional interpretation, a 

subclass is not a subset of its superclass. 

� In fact, a subclass usually contains more 

information and functions than its superclass.



Inheritance

Superclasses and Subclasses

� Private data fields and methods in a superclass

are not accessible outside of the class. 

� Therefore, they are not inherited in a subclass.



Using the super Keyword



Inheritance

Using the super Keyword

� A constructor is used to construct an instance 

of a class. 

� Unlike variables and methods, a superclass's

constructors are not inherited in the subclass. 

� They can only be invoked from the subclasses' � They can only be invoked from the subclasses' 

constructors, using the keyword super. 

� If the keyword super is not explicitly used, the 

superclass's no-arg constructor is automatically 

invoked.



Inheritance

Using the super Keyword

� The keyword super refers to the superclass of 

the class in which super appears. 

� It can be used in two ways:

– To call a superclass constructor.

– To call a superclass method.– To call a superclass method.



Inheritance

Calling Superclass Constructors

� The syntax to call a superclass constructor is:

super();

super(parameters); 

� The statement super() invokes the no-arg constructor 

of its superclass, of its superclass, 

� The statement super(arguments) invokes the 

superclass constructor that matches the arguments. 

� The statement super() or super(arguments) must 

appear in the first line of the subclass constructor and 

is the only way to invoke a superclass constructor.



Inheritance

Using the super Keyword

� A constructor may invoke an overloaded constructor or 

its superclass's constructor. 

� If neither of them is invoked explicitly, the compiler puts 

super() as the first statement in the constructor. 

� For example:



Inheritance

Using the super Keyword

� Invoking a superclass constructor’s name in a 

subclass causes a syntax error. 

– You must use the keyword super to call the 

superclass constructor. 



Inheritance

Constructor Chaining

� In any case, constructing an instance of a class 

invokes the constructors of all the superclasses

along the inheritance chain. 

� A superclass's constructor is called before the 

subclass's constructor. subclass's constructor. 

� This is called constructor chaining. 



Inheritance

Faculty.java

� Example:

– TestFaculty.java

� The output:
(1) Person's no-arg constructor is invoked(1) Person's no-arg constructor is invoked

(2) Employee's no-arg constructor is invoked

(3) Faculty's no-arg constructor is invoked he output:



Inheritance

Constructor Chaining

� If a class is designed to be extended, it is 

better to provide a no-arg constructor to avoid 

programming errors.

� Find out the errors in the program:
public class Apple extends Fruit public class Apple extends Fruit 

{ 

} 

class Fruit 

{ 

public Fruit(String name) 

{ 

System.out.println("Fruit's constructor is invoked"); 

} 

}



Inheritance

Constructor Chaining

� Since no constructor is explicitly defined in 

Apple, Apple's default no-arg constructor is 

declared implicitly. 

� Since Apple is a subclass of Fruit, Apple's 

default constructor automatically invokes Fruit's default constructor automatically invokes Fruit's 

no-arg constructor. 

� However, Fruit does not have a no-arg

constructor because Fruit has an explicit 

constructor defined. 

� Therefore, the program cannot be compiled.



Inheritance

Calling Superclass Methods

� The keyword super can also be used to 

reference a method in the superclass. The 

syntax is like this:

super.method(parameters); 

� You could rewrite the printCircle() method in � You could rewrite the printCircle() method in 

the Circle class as follows:

public void printCircle() 

{ 

System.out.println("The circle is created " + 
super.getDateCreated() + " and the radius is " + radius); 

} 



Overriding Methods



Inheritance

Overriding Methods

� A subclass inherits methods from a superclass. 

� Sometimes it is necessary for the subclass to 

modify the implementation of a method defined 

in the superclass. 

� This is referred to as method overriding.� This is referred to as method overriding.



Inheritance

Overriding Methods

� The toString method in the GeometricObject class 

returns the string representation for a geometric object. 

� This method can be overridden to return the string 

representation for a circle. 

� To override it, add the following new method in 

Circle.java:Circle.java:

public class Circle extends GeometricObject

{ 

public String toString() 

{ 

return super.toString() + "\nradius is " + radius; 

}

} 



Inheritance

Overriding Methods

� An instance of Circle can not invoke the 

toString method defined in the 

GeometricObject class.

� Because toString() in GeometricObject has 

been overridden in Circle.been overridden in Circle.



Inheritance

Overriding Methods

� An instance method can be overridden only if 

it is accessible. 

� Thus a private method cannot be overridden, 

because it is not accessible outside its own 

class. class. 

� If a method defined in a subclass is private in 

its superclass, the two methods are completely 

unrelated.



Inheritance

Overriding Methods

� Like an instance method, a static method can 

be inherited. 

� However, a static method cannot be 
overridden. 

� If a static method defined in the superclass is � If a static method defined in the superclass is 

redefined in a subclass, the method defined in 

the superclass is hidden. 



Inheritance

Overriding vs. Overloading

� Overloading a method is a way to provide more 

than one method with the same name but with 

different signatures to distinguish them. 

� To override a method, the method must be 

defined in the subclass using the same defined in the subclass using the same 
signature and same return type as in its 

superclass.



Inheritance

Overriding vs. Overloading

� The method p(int i) in class A overrides the 

same method defined in class B. 



Inheritance

Overriding vs. Overloading

� The method p(double i) in class A and the method p(int

i) in class B are two overloaded methods. The method 

p(int i) in class B is inherited in A.



Inheritance

Overriding vs. Overloading

� When you run the Test class in (a), a.p(10) 

invokes the p(int i) method defined in class A, 

so the program displays 10. 

� When you run the Test class in (b), a.p(10) 

invokes the p(int i) method defined in class B, invokes the p(int i) method defined in class B, 

so nothing is printed.



The Object Class



Inheritance

The Object Class

� If no inheritance is specified when a class is 

defined, the superclass of the class is 

java.lang.Object class by default. 

� For example, the following two class 

declarations are the same:declarations are the same:

� It is important to be familiar with the methods 

provided by the Object class so that you can 

use them in your classes.



Inheritance

Two Methods of Object Class

� equals() Method

– Use the equals() to compare two objects for 

equality. This method returns true if the objects are 

equal, false otherwise.

� toString() Method� toString() Method

– The toString() method returns a string 

representation of the object. 

– The default implementation returns a string 

consisting of a class name of which the object is an 

instance

– For an object of Object class the at sign (@) and a 

number representing this object is returned.



Inheritance

The toString() method

� For example:

Loan loan = new Loan();

System.out.println(loan.toString());

� The code displays something like 
Loan@15037e5 .Loan@15037e5 .

� This message is not very helpful or informative. 

� Usually you should override the toString

method.



References



Inheritance

References

� Y. Daniel Liang, Introduction to Java 
Programming, Sixth Edition, 

Pearson Education, 2007. (Chapter 9)



The End 


