24. Inheritance

Fall 2009
Instructor: Dr. Masoud Yaghini

Inheritance

Outline
-]

e Superclasses and Subclasses
e Using the super Keyworad

e Overriding Methods

e The Object Class

e References

Superclasses and Subclasses

Inheritance

Inheritance
-~

e Obiject-oriented programming allows you to
derive new classes from existing classes.

e [his is called inheritance.

e Inheritance is an important and powerful
concept in Java.

e In fact, every class you define in Java is
iInherited from an existing class, either explicitly
or implicitly.

e The classes you created in the preceding
chapters were all extended implicitly from the
java.lang.Object class.

Inheritance

Superclasses and Subclasses
o

e Subclass

— A class C1 is extended from another class C2 is
called a subclass,

— ltis also referred to as a subtype, a child class, an
extended class, or a derived class.
e Superclass
- Class C2 is called a superclass
— ltis also referred to as a supertype, a parent
class, or a base class
e A subclass inherits accessible data fields and
methods from its superclass, and may also add
new data fields and methods.

Inheritance

Superclasses and Subclasses
o

e Suppose you want to design the classes to model
geometric objects like circles and rectangles.

e (Geometric objects have many common properties such
as:
— color
— filled or unfilled
- Date created

e And behaviors:
-~ Can be drawn in a certain color
— filled or unfilled methods
— get and set methods
— getDateCreated()
— toString() method returns a string representation for the object

Inheritance

Superclasses and Subclasses
o/ /]

GeometricOhject
=colar: String The color of the object { default: white).
=fil1led: boolean Indecates whether the object s Blled with a color (defauls: fulse)
~dateCreated: java.util.Date The date when ihe object was created.
+LeometricObject() Creates a Geometnc et
+getlolar(): String Returns the color.
+setColor{color: String): woid Seis a new oolar,
+15Fi1led(}: boolean Returns the flled property,
+s5etFilled(filled: boalean): void Sets a new filled property.
+getDateCreated() : java.util.Date Returns the dateCreated,
+toString(): String Returns a string representation of this obyect
i |
Cirde Rectungle

=radius: double -width: double

- -height: double
+Circle()
+Circle(radius: double) +Rectangle()
+getRadius(): double +Rectangle(width: double, height: double)
+setRadivus{radius: double): void +getWidth(}: double
+getAreal): double +setWidthi{width: double): woid
+getPerimeter(): double +getHeight(): double
+getDiameter(): double +setHeightCheight: double): woid

+getAreal): double
+getPerimeter(): double

Inheritance

Superclasses and Subclasses
o

e The Circle class inherits all accessible data
fields and methods from the GeometricObject
class.

e In addition, it has a new data field, radius, and
its associated get and set methods.

e |t also contains the getArea(), getPerimeter(),
and getDiameter() methods for returning the
area, perimeter, and diameter of the circle.

Inheritance

Superclasses and Subclasses
o/ /]

e [he programs:
— GeometricObject.java
- Circle.java
—- Rectangle.java
- TestCircleRectangle.java

Inheritance

TestCircleRectangle.java
o/

e QOutput:
A circle created on Tue Sep 30 22:55:31 IRST 2008
color: white and filled: false
1.0
The radius is 1.0
The area is 3.141592653589793
The diameter is 2.0

A rectangle created on Tue Sep 30 22:55:32 IRST 2008
color: white and filled: false

The area is 8.0

The perimeter is 12.0

Inheritance

Superclasses and Subclasses
o

e The classes Circle and Rectangle extend the
GeometricObject class.

e The reserved word extends tells the compiler
that these classes extend the GeometricObject
class, thus inheriting the methods getColor,
setColor, isFilled, setFilled, and toString.

Inheritance

Superclasses and Subclasses
S —

e Contrary to the conventional interpretation, a
subclass is not a subset of its superclass.

e In fact, a subclass usually contains more
iInformation and functions than its superclass.

Inheritance

Superclasses and Subclasses
S —

e Private data fields and methods in a superclass
are not accessible outside of the class.

e Therefore, they are not inherited in a subclass.

Using the super Keyword

Inheritance

Using the super Keyword
o/ /]
e A constructor is used to construct an instance
of a class.

e Unlike variables and methods, a superclass's
constructors are not inherited in the subclass.

e They can only be invoked from the subclasses'
constructors, using the keyword super.

e If the keyword super is not explicitly used, the
superclass's no-arg constructor is automatically
iInvoked.

Inheritance
Using the super Keyword
. 000000000000
e The keyword super refers to the superclass of
the class in which super appears.

e |t can be used in two ways:
— To call a superclass constructor.
— To call a superclass method.

Inheritance

Calling Superclass Constructors
-

e The syntax to call a superclass constructor is:
super();
super(parameters);

e The statement super() invokes the no-arg constructor
of its superclass,

e The statement super(arguments) invokes the
superclass constructor that matches the arguments.

e The statement super() or super(arguments) must
appear in the first line of the subclass constructor and
IS the only way to invoke a superclass constructor.

Inheritance

Using the super Keyword

e A constructor may invoke an overloaded constructor or
Its superclass's constructor.

e If neither of them is invoked explicitly, the compiler puts
super() as the first statement in the constructor.

e For example:

public A() { is equivalent to public A() {
} = super();
public A(double d) { . _ public A(double d} {
// some statements 15 equivalent to super();
} ™ // some statements
b

Inheritance

Using the super Keyword
— —

e Invoking a superclass constructor's name in a
subclass causes a syntax error.

- You must use the keyword super to call the
superclass constructor.

Inheritance

Constructor Chaining

e In any case, constructing an instance of a class
iInvokes the constructors of all the superclasses

along the inheritance chain.

e A superclass's constructor is called before the
subclass's constructor.

e This is called constructor chaining.

Inheritance

Faculty.java
< / |/

e Example:
- TestFaculty.|ava

e [he output:
(1) Person’'s no-arg constructor is invoked
(2) Employee’s no-arg constructor is invoked
(3) Faculty's no-arg constructor is invoked he output:

Inheritance

Constructor Chaining
o/

e If a class is designed to be extended, it is
better to provide a no-arg constructor to avoid
programming errors.

e Find out the errors in the program:
public class Apple extends Fruit

{
}

class Fruit

{
public Fruit(String name)

{

System.out.printin("Fruit's constructor is invoked");

}
}

Inheritance

Constructor Chaining
o/

e Since no constructor is explicitly defined in
Apple, Apple's default no-arg constructor is

declared implicitly.

e Since Apple is a subclass of Fruit, Apple's
default constructor automatically invokes Fruit's
no-arg constructor.

e However, Fruit does not have a no-arg
constructor because Fruit has an explicit
constructor defined.

e Therefore, the program cannot be compiled.

Inheritance

Calling Superclass Methods
-

e The keyword super can also be used to
reference a method in the superclass. The
syntax is like this:

super.method(parameters);

e You could rewrite the printCircle() method in
the Circle class as follows:

public void printCircle()
{

System.out.printin("The circle is created " +
super.getDateCreated() + " and the radius is " + radius);

Overriding Methods

Inheritance

Overriding Methods
-

e A subclass inherits methods from a superclass.

e Sometimes it is necessary for the subclass to
modify the implementation of a method defined
in the superclass.

e This is referred to as method overriding.

Inheritance

Overriding Methods
-

e The toSiring method in the GeometricObject class
returns the string representation for a geometric object.

e This method can be overridden to return the string
representation for a circle.

e To override it, add the following new method in
Circle.java:
public class Circle extends GeometricObject

{
public String toString()

{

return super.toString() + "\nradius is " + radius;

}

Inheritance

Overriding Methods
< 0]
e An instance of Circle can not invoke the
toString method defined in the
GeometricObject class.

e Because toString() in GeometricObject has
been overridden in Circle.

Inheritance

Overriding Methods
. 000000000000
e An instance method can be overridden only if
it Is accessible.

e Thus a private method cannot be overridden,
because it Is not accessible outside Its own
class.

e If a method defined in a subclass is private in
its superclass, the two methods are completely
unrelated.

Inheritance

Overriding Methods
<
e Like an instance method, a static method can

be inherited.

e However, a static method cannot be
overridden.

e If a static method defined in the superclass is
redefined in a subclass, the method defined in
the superclass is hidden.

Inheritance

Overriding vs. Overloading
|
e Overloading a method is a way to provide more
than one method with the same name but with

different signatures to distinguish them.

e [o override a method, the method must be
defined in the subclass using the same
sighature and same return type as in its
superclass.

Inheritance

Overriding vs. Overloading
S —

e The method p(int i) in class A overrides the
same method defined in class B.

public class Test {
public static void main(String[]) args) {
Aa=new A():;
a.p(lo):

}
}

class B {
public void p(int i) {

}
}

class A e:ttnds B i

public wn:d p{int 1] {
System.out.printin(i);

}
}

Inheritance

Overriding vs. Overloading
< 0000000000000_0__]
e The method p(double i) in class A and the method p(int
) in class B are two overloaded methods. The method
p(int i) in class B is inherited in A.

public class Test {
public static void main(String[] args) {
Aa=new AQ;
a.p(10):
}
}

class B {
public void p(int i) {
}

}

class A extends B {

: ethi ovel IS 1
public void p(double 1) {
System.out.printin(i);

}
}

ik

Inheritance

Overriding vs. Overloading
o/

e When you run the Test class in (a), a.p(10)
iInvokes the p(int i) method defined in class A,
so the program displays 10.

e When you run the Test class in (b), a.p(10)
iInvokes the p(int i) method defined in class B,
so nothing is printed.

The Object Class

Inheritance

The Object Class
o

e If no inheritance is specified when a class is
defined, the superclass of the class is
java.lang.Object class by default.

e For example, the following two class
declarations are the same:

public class Circle extends Object {

}

'puh1ic class Circle {

A Equivalent
}

e It is important to be familiar with the methods
provided by the Object class so that you can
use them in your classes.

Inheritance

Two Methods of Object Class
-«]

e equals() Method

— Use the equals() to compare two objects for
equality. This method returns true if the objects are
equal, false otherwise.

e toString() Method

- The toString() method returns a string
representation of the object.

— The default implementation returns a string
consisting of a class name of which the object is an
instance

- For an object of Object class the at sign (@) and a
number representing this object is returned.

Inheritance

The toString() method
-«]

e For example:
Loan loan = new Loan();
System.out.printin(loan.toString());

e The code displays something like
Loan@15037e5 .

e This message is not very helpful or informative.

e Usually you should override the toString
method.

References

Inheritance

References
a]

e Y. Daniel Liang, Introduction to Java

Programming, Sixth Edition,
Pearson Education, 2007. (Chapter 9)

