
25. Generic Programming

Java

Fall 2009

Instructor: Dr. Masoud Yaghini

Generic Programming

Outline

� Polymorphism and Generic Programming

� Casting Objects and the instanceof Operator

� The protected Data and Methods

� The final Classes, Methods, and Variables� The final Classes, Methods, and Variables

� The this Keyword

� Abstract Methods and Classes

� References

Polymorphism and Generic
Programming

Generic Programming

Polymorphism

� The inheritance relationship enables a

subclass to inherit features from its superclass

with additional new features.

� A subclass is a specialization of its superclass

� Every instance of a subclass is an instance � Every instance of a subclass is an instance
of its superclass, but not vice versa.

� For example, every circle is an object, but not

every object is a circle.

� Therefore, you can always pass an instance of

a subclass to a parameter of its superclass

type.

Generic Programming

An Example

� Example:

– PolymorphismDemo.java

� The output?

StudentStudent

Student

Person

java.lang.Object@10b30a7

Generic Programming

Polymorphism

� When the method m(Object x) is executed, the

argument x's toString method is invoked.

� x may be an instance of GraduateStudent,

Student, Person, or Object.

� Classes GraduateStudent, Student, Person, � Classes GraduateStudent, Student, Person,

and Object have their own implementations of

the toString method.

� Which implementation is used will be

determined dynamically by the Java Virtual

Machine at runtime.

Generic Programming

Polymorphism

� This capability is known as dynamic binding
or polymorphism (from a Greek word

meaning "many forms") because one method

has many implementations.

� Polymorphism is a feature that an object of
a subtype can be used wherever its
supertype value is required.

Generic Programming

Generic Programming

� Polymorphism allows methods to be used generically

for a wide range of object arguments.

� This is known as generic programming. If a method's

parameter type is a superclass (e.g., Object), you may

pass an object to this method of any of the parameter's

subclasses (e.g., Student or String). subclasses (e.g., Student or String).

� When an object (e.g., a Student object or a String

object) is used in the method, the particular

implementation of the method of the object invoked

(e.g., toString) is determined dynamically.

Generic Programming

Polymorphism

� Polymorphism works as follows: Suppose an object o

is an instance of classes C1, C2, ..., Cn-1, and Cn

� Where C1 is a subclass of C2, C2 is a subclass of C3,

..., and Cn-1 is a subclass of Cn, as shown below:

� That is, Cn is the most general class, and C1 is the

most specific class.

� In Java, Cn is the Object class.

Generic Programming

Polymorphism

� If o invokes a method p, the JVM searches the

implementation for the method p in C1, C2, ...,

Cn-1, and Cn, in this order, until it is found.

� Once an implementation is found, the search

stops and the first-found implementation is stops and the first-found implementation is

invoked.

� For example, when m(new GraduateStudent())

is invoked, the toString method defined in the

Student class is used.

Casting Objects and the
instanceof Operator

Generic Programming

Casting Objects

� You have already used the casting operator to convert

variables of one primitive type to another.

� Casting can also be used to convert an object of one
class type to another within an inheritance hierarchy.

� In the preceding section, the statement

m(student);
– assigns the object student to a parameter of the Object type.

� This statement is equivalent to

Object o = new Student(); // Implicit casting m(o);

Generic Programming

Casting Objects

� The statement

Object o = new Student(),

– is legal because an instance of Student is automatically an
instance of Object.

– It is known as implicit casting,

� Suppose you want to assign the object reference o to a � Suppose you want to assign the object reference o to a

variable of the Student type using the following

statement:

Student b = o;

– A compilation error would occur. Why?

– Because a Student object is always an instance of Object, but
an Object is not necessarily an instance of Student.

Generic Programming

Casting Objects

� To tell the compiler that o is a Student object,

use an explicit casting.

� Enclose the target object type in parentheses

and place it before the object to be cast, as

follows:follows:

Student b = (Student) o; // Explicit casting

Generic Programming

Casting Objects

� Upcasting

– When casting an instance of a subclass to a

variable of a superclass

– It is possible, because an instance of a subclass is

always an instance of its superclass. always an instance of its superclass.

� Downcasting

– When casting an instance of a superclass to a

variable of its subclass

– Explicit casting must be used to confirm your

intention to the compiler with the (SubclassName)

cast notation.

Generic Programming

instanceof Operator

� For the downcasting to be successful, you must make

sure that the object to be cast is an instance of the

subclass.

� If the superclass object is not an instance of the

subclass, a runtime ClassCastException occurs.

For example, if an object is not an instance of Student, � For example, if an object is not an instance of Student,

it cannot be cast into a variable of Student.

� Therefore, to ensure that the object is an instance of

another object before attempting a casting.

� This can be accomplished by using the instanceof
operator.

Generic Programming

instanceof Operator

� Consider the following code:

Object myObject = new Circle();

/** Perform casting if myObject is an instance of Circle */

if (myObject instanceof Circle)

{ {

myObject = (Circle) myObject;

System.out.println("The circle diameter is " +

myObject.getDiameter());

}

Generic Programming

Casting Objects

� To help understand casting, you may also

consider the analogy of fruit, apple, and

orange, with the Fruit class as the superclass

for Apple and Orange.

� An apple is a fruit, so you can always safely � An apple is a fruit, so you can always safely

assign an instance of Apple to a variable for

Fruit.

� However, a fruit is not necessarily an apple, so

you have to use explicit casting to assign an

instance of Fruit to a variable of Apple.

Generic Programming

Casting Objects

� Why casting is necessary?

� Variable myObject is declared Object.

� The declared type decides which method to match at

compile time. Using myObject.getDiameter() would

cause a compilation error because the Object class

does not have the getDiameter method. does not have the getDiameter method.

� The compiler cannot find a match for

myObject.getDiameter().

� It is necessary to cast myObject into the Circle type to

tell the compiler that myObject is also an instance of

Circle.

Generic Programming

Casting Objects

� Why not declare myObject as a Circle type in

the first place?

� To enable generic programming, it is a good

practice to declare a variable with a supertype,

which can accept a value of any subtype.which can accept a value of any subtype.

� Example:

– TestPolymorphismCasting.java

Generic Programming

TestPolymorphismCasting.java

� The program uses implicit casting to assign a

Circle object to object1 and a Rectangle object

to object2, and then invokes the displayObject

method to display the information on these

objects.objects.

� Casting can only be done when the source
object is an instance of the target class.

� The program uses the instanceof operator to

ensure that the source object is an instance of

the target class before performing a casting

Generic Programming

TestPolymorphismCasting.java

� The object member access operator (.)

precedes the casting operator.

� Use parentheses to ensure that casting is done

before the . operator, as in

((Circle) object).getArea(); ((Circle) object).getArea();

The protected Data and Methods

Generic Programming

The protected Data and Methods

� The protected modifier can be applied on data

and methods in a class.

� A protected data or a protected method in a

public class can be accessed by any class in

the same package or its subclasses, even if the same package or its subclasses, even if

the subclasses are in a different package.

� The modifiers private, protected, and public are

known as visibility or accessibility modifiers

because they specify how class and class

members are accessed.

Generic Programming

Visibility modifiers

� The visibility of these modifiers increases in this order:

� Summarizing the accessibility of the members in a

classclass

Generic Programming

Visibility modifiers

Generic Programming

A Subclass Cannot Weaken the Accessibility

� A subclass may override a protected method in

its superclass and change its visibility to public.

� However, a subclass cannot weaken the

accessibility of a method defined in the

superclass. superclass.

� For example, if a method is defined as public in

the superclass, it must be defined as public in

the subclass.

The final Classes, Methods, and
Variables

Generic Programming

The final Classes, Methods, and Variables

� The final class cannot be extended:
final class Math

{

...

}

� The final variable is a constant:
final static double PI = 3.14159;

� The final method cannot be
overridden by its subclasses.

Generic Programming

The final Classes, Methods, and Variables

� The modifiers are used on classes and class

members (data and methods), except that the

final modifier can also be used on local

variables in a method.

� A final local variable is a constant inside a � A final local variable is a constant inside a

method.

The this Keyword

Generic Programming

The this Keyword

� A data field name is often used as the

parameter name in a set method for the

property.

� In this case, you need to reference the hidden

data field name in the method in order to set a data field name in the method in order to set a

new value to it.

� A hidden static variable can be accessed

simply by using the ClassName.StaticVariable

reference.

� A hidden instance variable can be accessed

by using the keyword this.InstanceVariable.

Generic Programming

The this Keyword

� The keyword this serves as the proxy for the

object that invokes the method.

� The line this.i = i means "assign the value of parameter

i to the data field i of the calling object."

Generic Programming

The this Keyword

� The keyword this can also be used inside a constructor

to invoke another constructor of the same class.

Abstract Methods and Classes

Generic Programming

The abstract Modifier

� The abstract method

– Method signature without implementation

– Its implementation is provided by the subclasses.

� The abstract class� The abstract class

– A class that contains abstract methods must be

declared abstract.

– Cannot be instantiated (you cannot create

instances of abstract classes)

Generic Programming

Abstract Classes

� In the preceding chapter we compute areas and

perimeters for all geometric objects

� It is better to declare the getArea() and

getPerimeter() methods in the GeometricObject

class.

� These methods cannot be implemented in the

GeometricObject class because their implementation

is dependent on the specific type of geometric

object.

� Such methods are referred to as abstract methods.

Generic Programming

An Example

� Example:

– GeometricObject.java

– Circle.java

– Rectangle.java

– TestAbstractClass.java– TestAbstractClass.java

� Output:
The two objects have the same area? false

The area is 78.53981633974483

The perimeter is 31.41592653589793

The area is 15.0

The perimeter is 16.0

Generic Programming

Abstract Classes

� An abstract class cannot be instantiated using

the new operator

� But you can still define its constructors, which

are invoked in the constructors of its

subclasses. subclasses.

� For instance, the constructors of

GeometricObject are invoked in the Circle

class and the Rectangle class.

Generic Programming

Abstract Classes

� A class that contains abstract methods must be

abstract.

� However, it is possible to declare an abstract

class that contains no abstract methods.

� In this case, you cannot create instances of the � In this case, you cannot create instances of the

class using the new operator.

� This class is used as a base class for defining

a new subclass.

References

Generic Programming

References

� Y. Daniel Liang, Introduction to Java
Programming, Sixth Edition,

Pearson Education, 2007. (Chapter 9 & 10)

The End

