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Polymorphism

� The inheritance relationship enables a 

subclass to inherit features from its superclass

with additional new features. 

� A subclass is a specialization of its superclass

� Every instance of a subclass is an instance � Every instance of a subclass is an instance 
of its superclass, but not vice versa. 

� For example, every circle is an object, but not 

every object is a circle. 

� Therefore, you can always pass an instance of 

a subclass to a parameter of its superclass

type. 
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An Example

� Example:

– PolymorphismDemo.java

� The output?

StudentStudent

Student

Person

java.lang.Object@10b30a7
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Polymorphism

� When the method m(Object x) is executed, the 

argument x's toString method is invoked. 

� x may be an instance of GraduateStudent, 

Student, Person, or Object. 

� Classes GraduateStudent, Student, Person, � Classes GraduateStudent, Student, Person, 

and Object have their own implementations of 

the toString method. 

� Which implementation is used will be 

determined dynamically by the Java Virtual 

Machine at runtime. 
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Polymorphism

� This capability is known as dynamic binding 
or polymorphism (from a Greek word 

meaning "many forms") because one method 

has many implementations.

� Polymorphism  is a feature that an object of 
a subtype can be used wherever its 
supertype value is required. 
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Generic Programming

� Polymorphism allows methods to be used generically 

for a wide range of object arguments. 

� This is known as generic programming. If a method's 

parameter type is a superclass (e.g., Object), you may 

pass an object to this method of any of the parameter's 

subclasses (e.g., Student or String). subclasses (e.g., Student or String). 

� When an object (e.g., a Student object or a String

object) is used in the method, the particular 

implementation of the method of the object invoked 

(e.g., toString) is determined dynamically.
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Polymorphism

� Polymorphism works as follows: Suppose an object o

is an instance of classes C1, C2, ..., Cn-1, and Cn

� Where C1 is a subclass of C2, C2 is a subclass of C3, 

..., and Cn-1 is a subclass of Cn, as shown below:

� That is, Cn is the most general class, and C1 is the 

most specific class. 

� In Java, Cn is the Object class. 
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Polymorphism

� If o invokes a method p, the JVM searches the 

implementation for the method p in C1, C2, ..., 

Cn-1, and Cn, in this order, until it is found. 

� Once an implementation is found, the search 

stops and the first-found implementation is stops and the first-found implementation is 

invoked. 

� For example, when m(new GraduateStudent()) 

is invoked, the toString method defined in the 

Student class is used.



Casting Objects and the 
instanceof Operator
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Casting Objects

� You have already used the casting operator to convert 

variables of one primitive type to another. 

� Casting can also be used to convert an object of one 
class type to another within an inheritance hierarchy. 

� In the preceding section, the statement 

m(student); 
– assigns the object student to a parameter of the Object type.

� This statement is equivalent to

Object o = new Student(); // Implicit casting m(o);
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Casting Objects

� The statement 

Object o = new Student(), 

– is legal because an instance of Student is automatically an 
instance of Object.

– It is known as implicit casting,

� Suppose you want to assign the object reference o to a � Suppose you want to assign the object reference o to a 

variable of the Student type using the following 

statement:

Student b = o; 

– A compilation error would occur. Why? 

– Because a Student object is always an instance of Object, but 
an Object is not necessarily an instance of Student.
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Casting Objects

� To tell the compiler that o is a Student object, 

use an explicit casting. 

� Enclose the target object type in parentheses 

and place it before the object to be cast, as 

follows:follows:

Student b = (Student) o; // Explicit casting 
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Casting Objects

� Upcasting

– When casting an instance of a subclass to a 

variable of a superclass

– It is possible, because an instance of a subclass is 

always an instance of its superclass. always an instance of its superclass. 

� Downcasting

– When casting an instance of a superclass to a 

variable of its subclass

– Explicit casting must be used to confirm your 

intention to the compiler with the (SubclassName) 

cast notation. 
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instanceof Operator

� For the downcasting to be successful, you must make 

sure that the object to be cast is an instance of the 

subclass. 

� If the superclass object is not an instance of the 

subclass, a runtime ClassCastException occurs. 

For example, if an object is not an instance of Student, � For example, if an object is not an instance of Student, 

it cannot be cast into a variable of Student. 

� Therefore, to ensure that the object is an instance of 

another object before attempting a casting. 

� This can be accomplished by using the instanceof
operator. 
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instanceof Operator

� Consider the following code:

Object myObject = new Circle(); 

/** Perform casting if myObject is an instance of Circle */ 

if (myObject instanceof Circle) 

{ { 

myObject = (Circle) myObject;

System.out.println("The circle diameter is " + 

myObject.getDiameter()); 

} 
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Casting Objects

� To help understand casting, you may also 

consider the analogy of fruit, apple, and 

orange, with the Fruit class as the superclass

for Apple and Orange. 

� An apple is a fruit, so you can always safely � An apple is a fruit, so you can always safely 

assign an instance of Apple to a variable for 

Fruit. 

� However, a fruit is not necessarily an apple, so 

you have to use explicit casting to assign an 

instance of Fruit to a variable of Apple.
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Casting Objects

� Why casting is necessary?

� Variable myObject is declared Object. 

� The declared type decides which method to match at 

compile time. Using myObject.getDiameter() would 

cause a compilation error because the Object class 

does not have the getDiameter method. does not have the getDiameter method. 

� The compiler cannot find a match for 

myObject.getDiameter(). 

� It is necessary to cast myObject into the Circle type to 

tell the compiler that myObject is also an instance of 

Circle.
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Casting Objects

� Why not declare myObject as a Circle type in 

the first place? 

� To enable generic programming, it is a good 

practice to declare a variable with a supertype, 

which can accept a value of any subtype.which can accept a value of any subtype.

� Example:

– TestPolymorphismCasting.java
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TestPolymorphismCasting.java

� The program uses implicit casting to assign a 

Circle object to object1 and a Rectangle object 

to object2, and then invokes the displayObject

method to display the information on these 

objects.objects.

� Casting can only be done when the source 
object is an instance of the target class. 

� The program uses the instanceof operator to 

ensure that the source object is an instance of 

the target class before performing a casting
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TestPolymorphismCasting.java

� The object member access operator (.) 

precedes the casting operator. 

� Use parentheses to ensure that casting is done 

before the . operator, as in

((Circle) object).getArea(); ((Circle) object).getArea(); 



The protected Data and Methods
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The protected Data and Methods

� The protected modifier can be applied on data 

and methods in a class. 

� A protected data or a protected method in a 

public class can be accessed by any class in 

the same package or its subclasses, even if the same package or its subclasses, even if 

the subclasses are in a different package.

� The modifiers private, protected, and public are 

known as visibility or accessibility modifiers 

because they specify how class and class 

members are accessed. 
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Visibility modifiers 

� The visibility of these modifiers increases in this order:

� Summarizing the accessibility of the members in a 

classclass
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Visibility modifiers 
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A Subclass Cannot Weaken the Accessibility

� A subclass may override a protected method in 

its superclass and change its visibility to public. 

� However, a subclass cannot weaken the 

accessibility of a method defined in the 

superclass. superclass. 

� For example, if a method is defined as public in 

the superclass, it must be defined as public in 

the subclass.



The final Classes, Methods, and 
Variables
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The final Classes, Methods, and Variables

� The final class cannot be extended:
final class Math 

{

...

}

� The final variable is a constant:
final static double PI = 3.14159;

� The final method cannot be
overridden by its subclasses.
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The final Classes, Methods, and Variables

� The modifiers are used on classes and class 

members (data and methods), except that the 

final modifier can also be used on local 

variables in a method. 

� A final local variable is a constant inside a � A final local variable is a constant inside a 

method.
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The this Keyword

� A data field name is often used as the 

parameter name in a set method for the 

property. 

� In this case, you need to reference the hidden 

data field name in the method in order to set a data field name in the method in order to set a 

new value to it. 

� A hidden static variable can be accessed 

simply by using the ClassName.StaticVariable

reference. 

� A hidden instance variable can be accessed 

by using the keyword this.InstanceVariable.
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The this Keyword

� The keyword this serves as the proxy for the 

object that invokes the method.

� The line this.i = i means "assign the value of parameter 

i to the data field i of the calling object."
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The this Keyword

� The keyword this can also be used inside a constructor 

to invoke another constructor of the same class.
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The abstract Modifier

� The abstract method

– Method signature without implementation

– Its implementation is provided by the subclasses. 

� The abstract class� The abstract class

– A class that contains abstract methods must be 

declared abstract.

– Cannot be instantiated (you cannot create 

instances of abstract classes)
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Abstract Classes

� In the preceding chapter we compute areas and 

perimeters for all geometric objects

� It is better to declare the getArea() and 

getPerimeter() methods in the GeometricObject

class.

� These methods cannot be implemented in the 

GeometricObject class because their implementation 

is dependent on the specific type of geometric 

object. 

� Such methods are referred to as abstract methods.
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An Example

� Example:

– GeometricObject.java

– Circle.java

– Rectangle.java

– TestAbstractClass.java– TestAbstractClass.java

� Output:
The two objects have the same area? false

The area is 78.53981633974483

The perimeter is 31.41592653589793

The area is 15.0

The perimeter is 16.0
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Abstract Classes

� An abstract class cannot be instantiated using 

the new operator

� But you can still define its constructors, which 

are invoked in the constructors of its 

subclasses. subclasses. 

� For instance, the constructors of 

GeometricObject are invoked in the Circle

class and the Rectangle class.
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Abstract Classes

� A class that contains abstract methods must be 

abstract. 

� However, it is possible to declare an abstract 

class that contains no abstract methods. 

� In this case, you cannot create instances of the � In this case, you cannot create instances of the 

class using the new operator. 

� This class is used as a base class for defining 

a new subclass.
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