
26. Interfaces

Java

Fall 2009

Instructor: Dr. Masoud Yaghini

Interfaces

Outline

� Definition

� The Comparable Interface

� Interfaces vs. Abstract Classes

� Creating Custom Interfaces� Creating Custom Interfaces

� References

Definition

Interfaces

Definition

� Single Inheritance

– A Java class may inherit directly from only one

superclass.

– This restriction is known as single inheritance.

� Multiple Inheritance� Multiple Inheritance

– Sometimes it is necessary to derive a subclass from

several classes.

– This capability is known as multiple inheritance.

– Java, however, does not allow multiple inheritance.

Interfaces

Definition

� If you use the extends keyword to define a

subclass, it allows only one parent class.

� Interfaces

– With interfaces, you can obtain the effect of

multiple inheritance.multiple inheritance.

– An interface is similar to an abstract class, but

� An interface contains only constants and abstract
methods.

� An abstract class can contain variables and concrete
methods as well as constants and abstract methods.

Interfaces

Definition

� To distinguish an interface from a class, Java

uses the following syntax to declare an

interface:

modifier interface InterfaceName

{ {

/** Constant declarations */

/** Method signatures */

}

Interfaces

Definition

� An interface is treated like a special class in

Java.

� Each interface is compiled into a separate

bytecode file, just like a regular class.

� As with an abstract class, you cannot create an � As with an abstract class, you cannot create an

instance from an interface using the new

operator

The Comparable Interface

Interfaces

The Comparable Interface

� Suppose you want to design a generic method to
find the larger of two objects.

� The objects can be students, circles, or rectangles.

� Since compare methods are different for different
types of objects, you need to define a generic types of objects, you need to define a generic
compare method to determine the order of the two
objects.

� For example, you can use

– student ID as the key for comparing students,

– radius as the key for comparing circles, and

– area as the key for comparing rectangles.

Interfaces

The Comparable Interface

� You can use an interface to define a generic

compareTo method, as follows:
// Interface for comparing objects, defined in java.lang

package java.lang;

public interface Comparable

{ {

public int compareTo(Object o);

}

� The compareTo method determines the order of this

object with the specified object o, and returns a

negative integer, zero, or a positive integer if this object

is less than, equal to, or greater than the specified

object o.

Interfaces

The Comparable Interface

� Many classes in the Java library (e.g., String and Date)

implement Comparable to define a natural order for the

objects.

� Thus strings are comparable, and so are dates. Let s

be a String object and d be a Date object. All the

following expressions are all true:

Interfaces vs. Abstract Classes

Interfaces

Interfaces vs. Abstract Classes

� In an interface, the data must be constants; an abstract

class can have all types of data.

� Each method in an interface has only a signature without

implementation; an abstract class can have concrete

methods.

Variables Constructors Methods

Abstract

class

No restrictions Constructors are invoked by subclasses

through constructor chaining.

An abstract class cannot be instantiated

using the new operator.

No restrictions.

Interface All variables

must be public

static final

No constructors. An interface cannot be

instantiated using the new operator.

All methods must be

public abstract

instance methods

Interfaces

Interfaces vs. Abstract Classes

� Since all data fields are public static final and all

methods are public abstract in an interface, Java

allows these modifiers to be omitted.

� Therefore the following declarations are equivalent:

� A constant defined in an interface can be accessed

using the syntax InterfaceName.CONSTANT_NAME

(e.g., T1.K).

Interfaces

Interfaces vs. Abstract Classes

� Java allows only single inheritance for class

extension, but multiple extensions for

interfaces.

� For example,
public class NewClass extends BaseClass implements public class NewClass extends BaseClass implements
Interface1, ..., InterfaceN

{

...

}

Interfaces

Interfaces vs. Abstract Classes

� An interface can inherit other interfaces using

the extends keyword.

� Such an interface is called a subinterface.

� For example, NewInterface in the following

code is a subinterface of Interface1, ..., and code is a subinterface of Interface1, ..., and

InterfaceN:

public interface NewInterface extends Interface1, ...,
InterfaceN

{

// constants and abstract methods

}

Interfaces

Interfaces vs. Abstract Classes

� All classes share a single root, the Object

class, but there is no single root for interfaces.

� Like a class, an interface also defines a type.

� A variable of an interface type can reference

any instance of the class that implements the any instance of the class that implements the

interface.

� If a class extends an interface, this interface

plays the same role as a superclass.

� You can use an interface as a data type and

cast a variable of an interface type to its

subclass, and vice versa.

Interfaces

Interfaces vs. Abstract Classes

� Abstract class Class1 implements Interface1, Interface1 extends
Interface1_1 and Interface1_2.

� Class2 extends Class1 and implements Interface2_1 and
Interface2_2.

� Suppose that c is an instance of Class2. c is also an instance of
Object, Class1, Interface1, Interface1_1, Interface1_2,
Interface2_1, and Interface2_2.

Interfaces

Interfaces vs. Abstract Classes

� Class names are nouns.

� Interface names may be adjectives or nouns.

� For example, both java.lang.Comparable and

java.awt.event.ActionListener are interfaces.

Comparable is an adjective, and ActionListener� Comparable is an adjective, and ActionListener

is a noun.

Creating Custom Interfaces

Interfaces

Creating Custom Interfaces

� Suppose you want to describe whether an

object is edible.

� You can declare the Edible interface.

� To denote that an object is edible, the class for

the object must implement Edible.the object must implement Edible.

� Create a class named Animal and its

subclasses Tiger, Chicken, and Elephant.

� Create a class named Fruit and its subclasses

Apple and Orange.

Interfaces

Creating Custom Interfaces

� The programs:

– Edible.java

– Fruit.java

– Animal.java

– TestEdible.java– TestEdible.java

Interfaces

Creating Custom Interfaces

� Since chicken is edible, implement the Edible

interface for the Chicken class.

� The Chicken class also implements the

Comparable interface to compare two chickens

� The Fruit class is abstract, because you cannot � The Fruit class is abstract, because you cannot

implement the howToEat method without

knowing exactly what the fruit is.

References

Interfaces

References

� Y. Daniel Liang, Introduction to Java

Programming, Sixth Edition,

Pearson Education, 2007. (Chapter 10)

The End

