26. Interfaces

Fall 2009
Instructor: Dr. Masoud Yaghini

Interfaces

Outline
-]

e Definition

e The Comparable Interface

e Interfaces vs. Abstract Classes
e Creating Custom Interfaces

e References

Definition

Interfaces

Definition
. 000000000000
e Single Inheritance

- A Java class may inherit directly from only one
superclass.

— This restriction is known as single inheritance.

e Multiple Inheritance

— Sometimes it is necessary to derive a subclass from
several classes.

- This capability is known as multiple inheritance.
- Java, however, does not allow multiple inheritance.

Interfaces

Definition
|
e If you use the extends keyword to define a
subclass, it allows only one parent class.

e Interfaces

- With interfaces, you can obtain the effect of
multiple inheritance.

— An interface is similar to an abstract class, but

e An interface contains only constants and abstract
methods.

e An abstract class can contain variables and concrete
methods as well as constants and abstract methods.

Interfaces
Definition
< 0]
e To distinguish an interface from a class, Java

uses the following syntax to declare an
interface:

modifier interface InterfaceName

{

/** Constant declarations */
/** Method signatures */

Interfaces

Definition
|
e An interface is treated like a special class Iin
Java.

e Each interface is compiled into a separate
bytecode file, just like a regular class.

e As with an abstract class, you cannot create an
instance from an interface using the new
operator

The Comparable Interface

Interfaces

The Comparable Interface
o« /000000
e Suppose you want to design a generic method to
find the larger of two objects.

e The objects can be students, circles, or rectangles.

e Since compare methods are different for different
types of objects, you need to define a generic
compare method to determine the order of the two
objects.

e For example, you can use
— student ID as the key for comparing students,
— radius as the key for comparing circles, and
— area as the key for comparing rectangles.

Interfaces

The Comparable Interface
7

e You can use an interface to define a generic

compare To method, as follows:
/l Interface for comparing objects, defined in java.lang

package java.lang;
public interface Comparable

{

public int compareTo(Object 0);

}

e The compareTo method determines the order of this
object with the specified object 0, and returns a
negative integer, zero, or a positive integer if this object
Is less than, equal to, or greater than the specified
object o.

Interfaces

The Comparable Interface
o/

e Many classes in the Java library (e.g., String and Date)
implement Comparable to define a natural order for the

objects.
public class 5tring extends Object public class Date extends Object
implements Comparable { implements Comparable {
Class body omitted ' s hody omitted
} }

e Thus strings are comparable, and so are dates. Let s
be a String object and d be a Date object. All the
following expressions are all true:

s 1instanceof String d instanceof java.util.Date
s instanceof Object d instanceof Object
s instanceof Comparable d instanceof Comparable

Interfaces vs. Abstract Classes

Interfaces

Interfaces vs. Abstract Classes
-_C]

e In an interface, the data must be constants; an abstract
class can have all types of data.

e Each method in an interface has only a signature without
iImplementation; an abstract class can have concrete

methods.
Variables Constructors Methods
Abstract | No restrictions Constructors are invoked by subclasses No restrictions.
class through constructor chaining.
An abstract class cannot be instantiated
using the new operator.
Interface | All variables No constructors. An interface cannot be | All methods must be
must be public instantiated using the new operator. public abstract
static final instance methods

Interfaces

Interfaces vs. Abstract Classes
< 0000000000000_0__]
e Since all data fields are public static final and all
methods are public abstract in an interface, Java
allows these modifiers to be omitted.

e Therefore the following declarations are equivalent:

public interface T1 { public interface T1 {
public static final int K = 1; } int K = 1;
Equivalent
public abstract void p(); void p();
} }

e A constant defined in an interface can be accessed
using the syntax InterfaceName.CONSTANT NAME
(e.g., T1.K).

Interfaces

Interfaces vs. Abstract Classes
|
e Java allows only single inheritance for class
extension, but multiple extensions for
interfaces.

e For example,

public class NewClass extends BaseClass implements
Interfacel, ..., InterfaceN

{

}

Interfaces

Interfaces vs. Abstract Classes
]

e An interface can inherit other interfaces using
the extends keyword.

e Such an interface is called a subinterface.

e For example, Newlnterface in the following
code is a subinterface of Interfaceft, ..., and
InterfaceN:

public interface NewlInterface extends Interfacet, ...,
InterfaceN

{

/l constants and abstract methods

}

Interfaces

Interfaces vs. Abstract Classes
-_C]

e All classes share a single root, the Object
class, but there is no single root for interfaces.

e Like a class, an interface also defines a type.

e A variable of an interface type can reference
any instance of the class that implements the
interface.

e If a class extends an interface, this interface
plays the same role as a superclass.

e You can use an interface as a data type and
cast a variable of an interface type to its
subclass, and vice versa.

Interfaces

Interfaces vs. Abstract Classes

e Abstract class Class1 implements Interfacel, Interface1 extends
Interface1_1 and Interface1 2.

e (lass2 extends Class1 and implements Interface2 1 and
Interface2 2.

Interfacel 2 |4----: Interface 2 Id.................t
5 E
.]
' 1

1 b
Interfacel 1 |4"' """ Interfacel |4 ““““““““““““ Interface2 1 Id"**"

-

. E
; :
¥ B
I H
Ohbject |<]— Class] |<} Clas2 |

e Suppose that c is an instance of Class2. c is also an instance of
Object, Class1, Interfacel, Interface1_1, Interfacel_2,
Interface2_1, and Interface2_ 2.

Interfaces

Interfaces vs. Abstract Classes
-_C]

e Class names are nouns.
e Interface names may be adjectives or nouns.

e For example, both java.lang.Comparable and
lava.awt.event.ActionListener are interfaces.

e Comparable is an adjective, and ActionListener
IS a noun.

Creating Custom Interfaces

Interfaces

Creating Custom Interfaces
-

e Suppose you want to describe whether an
object is edible.

e You can declare the Edible interface.

e To denote that an object is edible, the class for
the object must implement Edible.

e Create a class named Animal and its
subclasses Tiger, Chicken, and Elephant.

e Create a class named Fruit and its subclasses
Apple and Orange.

Interfaces

Creating Custom Interfaces
S —

e The programs:
— Edible.java
— Fruit.Java
- Animal.java
- TestEdible.java

Interfaces

Creating Custom Interfaces
-

e Since chicken is edible, implement the Edible
interface for the Chicken class.

e The Chicken class also implements the
Comparable interface to compare two chickens

e The Fruit class is abstract, because you cannot
implement the howToEat method without
knowing exactly what the fruit is.

References

Interfaces

References
a]

e Y. Daniel Liang, Introduction to Java
Programming, Sixth Edition,
Pearson Education, 2007. (Chapter 10)

