32. Recursion

Fall 2009
Instructor: Dr. Masoud Yaghini

Recursion

Outline
-]

e Introduction

Example: Factorials
Example: Fibonacci Numbers
Recursion vs. Iteration
References

Introduction

Recursion

Introduction
-_C]

e Recursive methods
- A method that invokes itself directly or indirectly.

e Recursion
— Is a useful programming technique

- It enables you to develop a natural, straightforward,
simple solution to a problem that would otherwise
be difficult to solve.

e Many mathematical functions are defined using
recursion.

Example: Factorials

Recursion

Example: Factorial
o —————/—////]

e Consider the factorial of a positive integer n,
written n! (and pronounced "n factorial"), which
IS the product

nx(n-1)xn-2)x...x1
e with 1! equal to 1 and 0! defined to be 1.

e For example, 5!'is the product 5x4x3x2x1,
which is equal to 120.

Recursion

Example: Factorial
@«]

e The factorial of integer n (where n >= 0) can be
calculated iteratively (non-recursively) using a
for statement as follows:

factorial = 1;
for (int counter = n; counter >= 1; counter--)
factorial = factorial * counter;

e The program:
- ComputeFactoriallteratively.java

Recursion

Example: Factorials
o —————/—////]

e The factorial of a number n can be recursively
calculated.

e Let factorial(n) be the method for computing n!.

e If you call the method with n = 0, it immediately
returns the result.

e [he method knows how to solve the simplest
case, which is referred to as the base case or
the stopping condition.

e If you call the method with n > 0, it reduces the
problem into a subproblem for computing the
factorial of n - 1.

Recursion

Example: Factorials
. 000000000000
e The subproblem is essentially the same as the
original problem, but is simpler or smaller than
the original.

e Because the subproblem has the same
property as the original, you can call the
method with a different argument, which is
referred to as a recursive call.

Recursion

Example: Factorials
o —————/—////]

e The recursive algorithm for computing
factorial(n) can be simply described as follows:
if (n == 0)
return 1;
else
return n * factorial(n - 1);

e The program:
- ComputeFactorialRecursively.java

Recursion

Example: Factorials
o —————/—////]

e [or a recursive method to terminate, the
problem must eventually be reduced to a
stopping case.

e When it reaches a stopping case, the method
returns a result to its caller.

e The caller then performs a computation and
returns the result to its own caller.

e This process continues until the result is
passed back to the original caller.

Recursion

Example: Factorials - Invoking factorial(4)
.

Factorial(4) = 4 * factorial(3)
=4 * (3 * factorial(2))

Recursion

Example: Factorials - Invoking factorial(4)

I'.i{:mn.al{d}

"ﬂ-.:p (h executes factonial(4)
Step return 24 |

eturn 4 * factorial{3)

"!ul-.r.l |7 executes factoral(3)
Step 8: return 6
Llu1 ni* f.aunrmll[i
step 2t executes factorial(2)
Step 7: return 2
1

return 2 ¥ I'ﬂl;.l:ut'iﬂl[l}l

"ﬂi:p 3 executes factonial(l)
sStep o return 1 |

return 1 * Tactoral ()

] Step 4: executes factorial{(l)
Step 5 return 1

| 1
return 1

Recursion

Example: Factorials — Memory Space
S —

Apace Kequired
fior Emcborial{ii)
Space Reguired Space Required
for factorial(1) for Eactorial{ L)
3 Space Baguired Space Regured Space Required
for Eactorial(2) for factorial() for Eactorial{ 2)
Space Required Space Required Space Required Space Required
for factorial(3) for Eactorial(3) for fnctorial(X) for factorial{ 1)
Space Requined Space Required Spade Required Space Required Space Required
for faciomal{d} for Tactoresli 41 for Enctoriali4) foar Ectoriali =) foer Emctarial 45
space Requined
for factonial{1 }
Space Requined Space Required
for factormald 2 fior factormali 2)
Space Requined Space Heqguired 8 | Space Required
for [adomal{ 3 for Gactorli 3] for factoriali 1)
Space Required space Reguined Space Required Spasce Bedquired
for factonial{4} for factoral(4) for factorial{d) for factorial(4)

Recursion

Caution
]

e It is simpler and more efficient to implement the
factorial method using a loop.

e However, the recursive factorial method is a
good example to demonstrate the concept of
recursion.

Recursion

Caution
]

e Infinite recursion can occur if recursion does
not reduce the problem in a manner that allows
it to eventually converge into the base case.

e For example, if you mistakenly write the
factorial method as follows:
public static long factorial(int n)

{

return n * factorial(n - 1);

}
e The method runs infinitely and causes a
StackOverflowError.

Example: Fibonacci Numbers

Recursion

Example: Fibonacci Numbers
< / |/

e Consider the well-known Fibonacci series
problem, as follows:

Theseries: 01 1235 813 2134 55 89 ...

indices: 0123456 7 8 9 10 11

e The Fibonacci series begins with 0 and 1, and
each subsequent number is the sum of the
preceding two numbers in the series.

Recursion

Example: Fibonacci Numbers
< / |/

e The recursive algorithm for computing fib(index) can be

simply described as follows:
if (index == 0)
return 0O;
else if (index == 1)
return 1;
else
return fib(index - 1) + fib(index - 2);
e Example:
fib(3) = fib(2) + fib(1)
= (fib(1) + fib(0)) + fib(1)
= (1 + 0) + fib(1)
=1 + fib(1)
=1+1
=2

Recursion

Example: Fibonacci Numbers

e The program:
- ComputeFibonacciRecursively.jJava

fikd 4}
refurn (it di//)"_* F call fild}
s X} + Bb{2 I

1 0: all flsl 2

11k fgturs T %) _'_'_F'_,/'I — e
.l F_ 1 call fibi Y} Wh
murnum) « fIb{1) — return fIB{1) = fibi)
/ B call Tk 1)
e ratmrm Bhl1] 15 retiird fiB005

r|:|urn itk 1) + MBI r-.l. m i return

12 call i1y

14 recunn fib{ i}

Recursion

Example: Fibonacci Numbers
|
e The recursive implementation of the fib method
IS very simple and straightforward, but not

efficient.

e The recursive fib method is a good example to
demonstrate how to write recursive methods,
though it is not practical.

e See ComputeFibonaccilteratively.java an
efficient solution using loops.
- ComputeFibonaccilteratively.java

Recursion vs. lteration

Recursion

Recursion vs. lteration
- 0000007
e All recursive methods have the following
characteristics:

- The method is implemented using an if-else or a
switch statement that leads to different cases.

- One or more base cases (the simplest case) are
used to stop recursion.

— Every recursive call reduces the original problem,
bringing it increasingly closer to a base case until it
becomes that case.

Recursion

Recursion vs. lteration
-~

e In general, to solve a problem using recursion,
you break it into subproblems.

e If a subproblem resembles the original
problem, you can apply the same approach to
solve the subproblem recursively.

e This subproblem is almost the same as the
original problem in nature with a smaller size.

Recursion

Recursion vs. Iteration
<
e Both iteration and recursion use a control
statement
— lteration uses a repetition statement,
e e.g., for, while or do...while

-~ Recursion uses a selection statement
® e.9., if, if...else or switch

Recursion

Recursion vs. lteration
-~

e Both iteration and recursion involve repetition:
— lteration explicitly uses a repetition statement,
- Recursion achieves repetition through repeated
method calls.
e |teration and recursion both involve a
termination test

— lteration terminates when the loop-continuation
condition fails

— Recursion terminates when a base case is reached

Recursion

Recursion vs. lteration
|
e A recursive approach is normally preferred
over an iterative approach when:

- The recursive approach more naturally mirrors the
problem and results in a program that is easier to
understand and debug.

— A recursive approach can often be implemented
with fewer lines of code.

Recursion

Recursion vs. lteration
. 000000000000
e Any problem that can be solved recursively can
also be solved iteratively.

e Recursion can be expensive in terms of
processor time and memory space

e Avoid using recursion in situations requiring
high performance. Recursive calls take time
and consume additional memory.

References

Recursion

References
a]

e Y. Daniel Liang, Introduction to Java
Programming, Sixth Edition,
Pearson Education, 2007. (Chapter 19)

e H. M. Deitel and P. J. Deitel, Java™ How to
Program, Sixth Edition, Prentice Hall, 2005.
(Chapter 15)

