
32. Recursion

Java

Fall 2009

Instructor: Dr. Masoud Yaghini

Recursion

Outline

� Introduction

� Example: Factorials

� Example: Fibonacci Numbers

� Recursion vs. Iteration

� References

Introduction

Recursion

Introduction

� Recursive methods

– A method that invokes itself directly or indirectly.

� Recursion

– is a useful programming technique

– It enables you to develop a natural, straightforward, – It enables you to develop a natural, straightforward,

simple solution to a problem that would otherwise

be difficult to solve.

� Many mathematical functions are defined using

recursion.

Example: Factorials

Recursion

Example: Factorial

� Consider the factorial of a positive integer n,

written n! (and pronounced "n factorial"), which

is the product

n x (n - 1) x (n - 2) x … x 1

� with 1! equal to 1 and 0! defined to be 1. � with 1! equal to 1 and 0! defined to be 1.

� For example, 5! is the product 5x4x3x2x1,

which is equal to 120.

Recursion

Example: Factorial

� The factorial of integer n (where n >= 0) can be

calculated iteratively (non-recursively) using a

for statement as follows:

factorial = 1;

for (int counter = n; counter >= 1; counter--) for (int counter = n; counter >= 1; counter--)

factorial = factorial * counter;

� The program:

– ComputeFactorialIteratively.java

Recursion

Example: Factorials

� The factorial of a number n can be recursively

calculated.

� Let factorial(n) be the method for computing n!.

� If you call the method with n = 0, it immediately

returns the result. returns the result.

� The method knows how to solve the simplest

case, which is referred to as the base case or

the stopping condition.

� If you call the method with n > 0, it reduces the

problem into a subproblem for computing the

factorial of n - 1.

Recursion

Example: Factorials

� The subproblem is essentially the same as the

original problem, but is simpler or smaller than

the original.

� Because the subproblem has the same

property as the original, you can call the property as the original, you can call the

method with a different argument, which is

referred to as a recursive call.

Recursion

Example: Factorials

� The recursive algorithm for computing

factorial(n) can be simply described as follows:

if (n == 0)

return 1;

else else

return n * factorial(n - 1);

� The program:

– ComputeFactorialRecursively.java

Recursion

Example: Factorials

� For a recursive method to terminate, the

problem must eventually be reduced to a

stopping case.

� When it reaches a stopping case, the method

returns a result to its caller. returns a result to its caller.

� The caller then performs a computation and

returns the result to its own caller.

� This process continues until the result is

passed back to the original caller.

Recursion

Example: Factorials - Invoking factorial(4)

Factorial(4) = 4 * factorial(3)

= 4 * (3 * factorial(2))

= 4 * (3 * (2 * factorial(1)))

= 4 * (3 * (2 * (1 * factorial(0))))

= 4 * (3 * (2 * (1 * 1)))) = 4 * (3 * (2 * (1 * 1))))

= 4 * (3 * (2 * 1))

= 4 * (3 * 2)

= 4 * 6

= 24

Recursion

Example: Factorials - Invoking factorial(4)

Recursion

Example: Factorials – Memory Space

Recursion

Caution

� It is simpler and more efficient to implement the

factorial method using a loop.

� However, the recursive factorial method is a

good example to demonstrate the concept of

recursion.recursion.

Recursion

Caution

� Infinite recursion can occur if recursion does

not reduce the problem in a manner that allows

it to eventually converge into the base case.

� For example, if you mistakenly write the

factorial method as follows:factorial method as follows:

public static long factorial(int n)

{

return n * factorial(n - 1);

}

� The method runs infinitely and causes a

StackOverflowError.

Example: Fibonacci Numbers

Recursion

Example: Fibonacci Numbers

� Consider the well-known Fibonacci series

problem, as follows:

The series: 0 1 1 2 3 5 8 13 21 34 55 89 …

indices: 0 1 2 3 4 5 6 7 8 9 10 11

� The Fibonacci series begins with 0 and 1, and

each subsequent number is the sum of the

preceding two numbers in the series.

Recursion

Example: Fibonacci Numbers

� The recursive algorithm for computing fib(index) can be

simply described as follows:
if (index == 0)

return 0;

else if (index == 1)

return 1; return 1;

else

return fib(index - 1) + fib(index - 2);

� Example:

fib(3) = fib(2) + fib(1)

= (fib(1) + fib(0)) + fib(1)

= (1 + 0) + fib(1)

= 1 + fib(1)

= 1 + 1

= 2

Recursion

Example: Fibonacci Numbers

� The program:

– ComputeFibonacciRecursively.java

Recursion

Example: Fibonacci Numbers

� The recursive implementation of the fib method

is very simple and straightforward, but not

efficient.

� The recursive fib method is a good example to

demonstrate how to write recursive methods, demonstrate how to write recursive methods,

though it is not practical.

� See ComputeFibonacciIteratively.java an

efficient solution using loops.

– ComputeFibonacciIteratively.java

Recursion vs. Iteration

Recursion

Recursion vs. Iteration

� All recursive methods have the following

characteristics:

– The method is implemented using an if-else or a

switch statement that leads to different cases.

– One or more base cases (the simplest case) are – One or more base cases (the simplest case) are

used to stop recursion.

– Every recursive call reduces the original problem,

bringing it increasingly closer to a base case until it

becomes that case.

Recursion

Recursion vs. Iteration

� In general, to solve a problem using recursion,

you break it into subproblems.

� If a subproblem resembles the original

problem, you can apply the same approach to

solve the subproblem recursively. solve the subproblem recursively.

� This subproblem is almost the same as the

original problem in nature with a smaller size.

Recursion

Recursion vs. Iteration

� Both iteration and recursion use a control

statement

– Iteration uses a repetition statement,

� e.g., for, while or do...while

– Recursion uses a selection statement– Recursion uses a selection statement

� e.g., if, if...else or switch

Recursion

Recursion vs. Iteration

� Both iteration and recursion involve repetition:

– Iteration explicitly uses a repetition statement,

– Recursion achieves repetition through repeated

method calls.

� Iteration and recursion both involve a � Iteration and recursion both involve a

termination test

– Iteration terminates when the loop-continuation

condition fails

– Recursion terminates when a base case is reached

Recursion

Recursion vs. Iteration

� A recursive approach is normally preferred

over an iterative approach when:

– The recursive approach more naturally mirrors the

problem and results in a program that is easier to

understand and debug. understand and debug.

– A recursive approach can often be implemented

with fewer lines of code.

Recursion

Recursion vs. Iteration

� Any problem that can be solved recursively can

also be solved iteratively.

� Recursion can be expensive in terms of

processor time and memory space

� Avoid using recursion in situations requiring � Avoid using recursion in situations requiring

high performance. Recursive calls take time

and consume additional memory.

References

Recursion

References

� Y. Daniel Liang, Introduction to Java

Programming, Sixth Edition,

Pearson Education, 2007. (Chapter 19)

� H. M. Deitel and P. J. Deitel, Java™ How to

Program, Sixth Edition, Prentice Hall, 2005. Program, Sixth Edition, Prentice Hall, 2005.

(Chapter 15)

The End

