
33. Dynamic Data Structures

Java

Fall 2009

Instructor: Dr. Masoud Yaghini

Dynamic Data Structures

Outline

� Introduction

� Linked Lists

� ArrayList Class

� Generics

� LinkedList Class

� Collections Class

� Stack Class

� PriorityQueue Class

� HashSet Class

� References

Introduction

Dynamic Data Structures

Introduction

� Data Structure

– A data structure is a collection of data organized in

some fashion.

– A data structure not only stores data, but also

supports the operations for accessing and supports the operations for accessing and

manipulating data in the structure.

� Types of data structures:

– Fixed-size data structures

� such as one-dimensional and multidimensional arrays.

– Dynamic data structures

� that grow and shrink at execution time.

Dynamic Data Structures

Arrays

� An array is a data structure that holds a

collection of data in sequential order.

� You can find the size of the array, and store,

retrieve, and modify data in the array.

� Arrays are simple and easy to use, but they � Arrays are simple and easy to use, but they

have two limitations:

– (1) once an array is created, its size cannot be

altered;

– (2) an array does not provide adequate support for

insertion and deletion operations.

Dynamic Data Structures

Classic Dynamic Data Structures

� Classic dynamic data structures:

– Linked Lists

– Stacks

– Queues

– Trees– Trees

Dynamic Data Structures

Classic Dynamic Data Structures

� Linked lists

– are collections of data items "linked up in a chain

insertions and deletions can be made anywhere in a

linked list.

� Stacks� Stacks

– are important in compilers and operating systems;

insertions and deletions are made only at one end

of a stacks top.

Dynamic Data Structures

Classic Dynamic Data Structures

� Queues

– represent waiting lines; insertions are made at the

back (also referred to as the tail) of a queue and

deletions are made from the front (also referred to

as the head).

� Trees

– is a data structure that supports searching, sorting,

inserting, and deleting data efficiently.

Dynamic Data Structures

Object-Oriented Data Structure

� In object-oriented thinking, a data structure is

an object that stores other objects, referred to

as data or elements.

� Some people refer to data structures as

container objects or collection objects. container objects or collection objects.

� To define a data structure is essentially to

declare a class.

� The class for a data structure should use data

fields to store data and provide methods to

support such operations as insertion and

deletion.

Dynamic Data Structures

Object-Oriented Data Structure

� To create a data structure is therefore to create

an instance from the class.

� You can then apply the methods on the

instance to manipulate the data structure, such

as inserting an element into the data structure as inserting an element into the data structure

or deleting an element from the data structure.

Dynamic Data Structures

Introduction

� Java Collections Framework

– Contain prepackaged data structures, interfaces,

algorithms for manipulating those data structures

– With collections, programmers use existing data

structures, without concern for how they are structures, without concern for how they are

implemented.

– This is a example of code reuse.

– Programmers can code faster and can expect

excellent performance, maximizing execution speed

and minimizing memory consumption.

Dynamic Data Structures

Introduction

� Collection

– Data structure (object) that can hold references to

other objects

� Collections Framework Interfaces

– declare operations for various collection types– declare operations for various collection types

– Provide high-performance, high-quality

implementations of common data structures

– Enable software reuse

Dynamic Data Structures

Collections Framework Interfaces

� Collection

– The root interface in the collections hierarchy from which
interfaces Set, Queue and List are derived.

� List

– An ordered collection that can contain duplicate elements.

� Queue� Queue

– Typically a first-in, first-out collection that models a waiting line;
other orders can be specified.

� Set

– A collection that does not contain duplicates.

� Map

– Associates keys to values and cannot contain duplicate keys.

Dynamic Data Structures

Collections Framework Interfaces

� Set and List are subinterfaces of Collection

Set

SortedSet

AbstractSet

TreeSet

HashSet LinkedHashSet

Collection

HashSet

List AbstractList

AbstractSequentialList

ArrayList

LinkedList

AbstractCollection

Vector Stack

LinkedHashSet

Interfaces Abstract Classes Concrete Classes

Dynamic Data Structures

Interfaces and Classes

Description

implemented

by classInterface

a linked list data structureArrayListList

a linked list data structureLinkedListList a linked list data structureLinkedListList

a stack data structureStackList

A queue data structurePriorityQueueQueue

Stores unique elements in a hash tableHashSetSet

ArrayList Class

Dynamic Data Structures

Lists

� A list is a popular data structure for storing data in

sequential order.

� For example, a list of students, a list of available

rooms, a list of cities, and a list of books can all be

stored using lists.

The operations listed below are typical of most lists:� The operations listed below are typical of most lists:

– Retrieve an element from a list.

– Insert a new element to a list.

– Delete an element from a list.

– Find how many elements are in a list.

– Find whether an element is in a list.

– Find whether a list is empty.

Dynamic Data Structures

Lists

� List

– A list is can contain duplicate elements

– Sometimes called a sequence

– List indices are zero based (i.e., the first element's

index is zero)index is zero)

– Classes

� ArrayList: is resizable-array

� LinkedList : is resizable-array

Dynamic Data Structures

ArrayList Class

� You can create an array to store objects.

� But the array's size is fixed once the array is

created.

� Java provides the ArrayList class that can be

used to store an unlimited number of objects.used to store an unlimited number of objects.

� ArrayList is a class of java.util.

� Autoboxing occurs when you add a primitive

type to a ArrayList

Dynamic Data Structures

ArrayList Class

� +ArrayList()

– Creates an empty list.

� +add(o: Object) : void

– Appends a new element o at the end of this list.

� +add(index: int, o: Object) : void� +add(index: int, o: Object) : void

– Adds a new element o at the specified index in this

list.

� +clear(): void

– Removes all the elements from this list.

� +contains(o: Object): boolean

– Returns true if this list contains the element o.

Dynamic Data Structures

ArrayList Class

� +get(index: int) : Object

– Returns the element from this list at the specified

index.

� +indexOf(o: Object) : int

– Returns the index of the first matching element in – Returns the index of the first matching element in

this list.

� +isEmpty(): boolean

– Returns true if this list contains no elements.

� +lastIndexOf(o: Object) : int

– Returns the index of the last matching element in

this list.

Dynamic Data Structures

ArrayList Class

� +remove(o: Object): boolean

– Removes the element o from this list.

� +size(): int

– Returns the number of elements in this list.

� +remove(index: int) : Object� +remove(index: int) : Object

– Removes the element at the specified index.

� +set(index: int, o: Object) : Object

– Sets the element at the specified index.

Dynamic Data Structures

ArrayList Class

� Example 1:

– TestArrayList.java

– GeometricObject.java

– Circle.java

� You will get a compilation warning “unchecked

operation” Ignore it.

Dynamic Data Structures

ArrayList Class

� The output:

List size? 6

Is Toronto in the list? true

The location of New York in the list? 1

Is the list empty? falseIs the list empty? false

London Beijing Paris Hong Kong Singapore

The area of the circle? 12.566370614359172

Dynamic Data Structures

ArrayList Class

� Example 2:

– TestArrayList2.java

� ArrayList:

MAGENTA RED WHITE BLUE CYAN � MAGENTA RED WHITE BLUE CYAN

� ArrayList after calling removeColors:

� MAGENTA CYAN

Dynamic Data Structures

ArrayList Class

� Example 3:

– TestArrayList3.java

� The output:

List is: 7 List is: 7

List is: 7 11

List is: 12 7 11

List is: 12 11

Dynamic Data Structures

Performance Tip

� An array can be declared to contain more

elements than the number of items expected,

but this wastes memory.

� Linked lists provide better memory utilization in

these situations. these situations.

� Linked lists allow the program to adapt to

storage needs at runtime.

Dynamic Data Structures

Performance Tip

� Insertion into a linked list is fast—only two

references have to be modified (after locating

the insertion point).

� All existing node objects remain at their current

locations in memory.locations in memory.

Dynamic Data Structures

Performance Tip

� Insertion and deletion in a sorted array can be

time consuming

� All the elements following the inserted or

deleted element must be shifted appropriately.

Dynamic Data Structures

Performance Tip

� Normally, the elements of an array are

contiguous in memory.

� This allows immediate access to any array

element, because its address can be

calculated directly as its offset from the calculated directly as its offset from the

beginning of the array.

� Linked lists do not afford such immediate

access to their elements

� An element can be accessed only by traversing

the list from the front (or from the back in a

doubly linked list).

Dynamic Data Structures

Linked Lists

� Linked list graphical representation

Generics

Dynamic Data Structures

Generics

� It would be nice if we could write a single sort

method that could sort the elements in an

Integer array, a String array or an array of any

type that supports ordering (i.e., its elements

can be compared). can be compared).

� It would also be nice if we could write a single

Stack class that could be used as a Stack of

integers, a Stack of floating-point numbers, a

Stack of Strings or a Stack of any other type.

Dynamic Data Structures

Generics

� It would be even nicer if we could detect type

mismatches at compile time known as

compile-time type safety.

� For example, if a Stack stores only integers,

attempting to push a String on to that Stack attempting to push a String on to that Stack

should issue a compile-time error.

� Generics provides the means to create the

general models mentioned above.

Dynamic Data Structures

Generics

� Generics

– Provide compile-time type safety

� Catch invalid types at compile time

– Generic methods

� A single method declaration� A single method declaration

– Generic classes

� A single class declaration

Dynamic Data Structures

Generics

� Note that ArrayList is a generic class, so we

are able to specify a type argument (String in

this case) to indicate the type of the elements

in each list.

� Example:

– TestArrayList4.java

LinkedList Class

Dynamic Data Structures

LinkedList Class

� LinkedLists can be used to create stacks,

queues, trees and deques (double-ended

queues, pronounced “decks”).

� The collections framework provides

implementations of some of these data implementations of some of these data

structures.

Dynamic Data Structures

Iterator

� It is common in object-oriented programming to declare

an iterator class that can traverse all the objects in a

collection, such as an array or an ArrayList or

LinkedList

� For example, a program can print an LinkedList of

objects by creating an iterator object and using it to objects by creating an iterator object and using it to

obtain the next list element each time the iterator is

called.

� Iterators often are used in polymorphic programming to

traverse a collection that contains references to objects

from various levels of a hierarchy.

Dynamic Data Structures

LinkedList Class

� ListTest.java

– The program creates two LinkedLists that contain

Strings.

– The elements of one List are added to the other.

– Then all the Strings are converted to uppercase, – Then all the Strings are converted to uppercase,

and

– a range of elements is deleted

Dynamic Data Structures

LinkedList Class

� The program output:

list1:

black yellow green blue violet silver gold white brown blue gray silver

list1:

BLACK YELLOW GREEN BLUE VIOLET SILVER GOLD WHITE

BROWN BLUE GRAY SILVER BROWN BLUE GRAY SILVER

Deleting elements 4 to 6...

list1:

BLACK YELLOW GREEN BLUE WHITE BROWN BLUE GRAY SILVER

Reversed List:

SILVER GRAY BLUE BROWN WHITE BLUE GREEN YELLOW BLACK

Dynamic Data Structures

Common Programming Error

� If a collection is modified by one of its methods

after an iterator is created for that collection,

the iterator immediately becomes invalid—any

operations performed with the iterator after this

point throw ConcurrentModificationExceptions. point throw ConcurrentModificationExceptions.

� For this reason, iterators are said to be “fail

fast.”

Dynamic Data Structures

LinkedList Class

� static method asList of class Arrays

– Allow programmer to manipulate the array as if it

were a list

– Any modification made through the List view change

the arraythe array

– Any modification made to the array change the List

view

Dynamic Data Structures

LinkedList Class

� UsingToArray.java

– The program calls method asList to create a List

view of an array, which is then used for creating a

LinkedList object,

– adds a series of strings to a LinkedList and – adds a series of strings to a LinkedList and

– calls method toArray to obtain an array containing

references to the strings.

– Notice that the instantiation of LinkedList indicates

that LinkedList is a generic class that accepts one

type argumentString, in this example.

Dynamic Data Structures

LinkedList Class

� The program output:

colors:

cyan

black

blueblue

yellow

green

red

pink

Dynamic Data Structures

Common Programming Error

� If the number of elements in the array is

smaller than the number of elements in the list

on which toArray is called, a new array is

allocated to store the list’s elements

� If the number of elements in the array is � If the number of elements in the array is

greater than the number of elements in the list,

the elements of the array (starting at index

zero) are overwritten with the list’s elements.

Array elements that are not overwritten retain

their values.

Collections Class

Dynamic Data Structures

Collections Class

� Collections class provides set of algorithms,

implemented as static methods, include:

– sort
� Sorts the elements of a List.

– binarySearch
� Locates an object in a List.� Locates an object in a List.

– reverse
� Reverses the elements of a List.

– shuffle
� Randomly orders a List's elements.

– fill
� Sets every List element to refer to a specified object.

– copy

� Copies references from one List into another.

Dynamic Data Structures

Collections Class

– min

� Returns the smallest element in a Collection.

– max

� Returns the largest element in a Collection.

– addAll

� Appends all elements in an array to a collection.� Appends all elements in an array to a collection.

– frequency

� Calculates how many elements in the collection are equal
to the specified element.

– disjoint

� Determines whether two collections have no elements in
common.

Dynamic Data Structures

Algorithm sort

� sort

– Sorts List elements

� Order is determined by natural order of elements’ type

� Sorting in ascending order

– Collections method sort– Collections method sort

� Sorting in descending order

– Collections static method reverseOrder

Dynamic Data Structures

Algorithm sort

� Sort1.java

– uses algorithm sort to order the elements of a List in

ascending order.

– Recall that List is a generic type and accepts one

type argument that specifies the list element typetype argument that specifies the list element type

� The program output:

Unsorted array elements:

[Hearts, Diamonds, Clubs, Spades]

Sorted array elements:

[Clubs, Diamonds, Hearts, Spades]

Dynamic Data Structures

Sorting in Descending Order

� Sort2.java

– sorts the same list of strings in descending order.

– The static Collections method reverseOrder returns

a object that orders the collection's elements in

reverse order. It is a parameter for sort method.reverse order. It is a parameter for sort method.

� The program output:

Unsorted array elements:

[Hearts, Diamonds, Clubs, Spades]

Sorted list elements:

[Spades, Hearts, Diamonds, Clubs]

Dynamic Data Structures

Algorithm shuffle

� ShuffleTest.java

– In this program we use algorithm shuffle to shuffle a

deck of Card objects that might be used in a card

game simulator.

� The program output:� The program output:

Array elements:

[Hearts, Diamonds, Clubs, Spades]

Shuffled list elements:

[Spades, Clubs, Diamonds, Hearts]

Dynamic Data Structures

Algorithm reverse, fill, copy, max and min

� reverse

– Reverses the order of List elements

� fill

– Overwrites elements in a List with a specified value.

– The fill operation is useful for reinitializing a List.

copy� copy

– Creates copy of a List

– takes two arguments a destination List and a source List

– Each source List element is copied to the destination List

– The destination List must be at least as long as the source
List; otherwise, an IndexOutOfBoundsException occurs.

– If the destination List is longer, the elements not overwritten

Dynamic Data Structures

Algorithm reverse, fill, copy, max and min

� max

– Returns largest element in List

– Operate on any Collection

� min

– Returns smallest element in List– Returns smallest element in List

– Operate on any Collection

Dynamic Data Structures

Algorithm1.java

� Algorithms1.java

– demonstrates the use of algorithms reverse, fill, copy, min and
max.

� The program output:
Initial list:

The list is: P C M

Max: P Min: CMax: P Min: C

After calling reverse:

The list is: M C P

Max: P Min: C

After copying:

The list is: M C P

Max: P Min: C

After calling fill:

The list is: R R R

Max: R Min: R

Dynamic Data Structures

Algorithm binarySearch

� The binarySearch algorithm locates an object in a List

(i.e., a LinkedList or an ArrayList).

� If the object is found, its index is returned. If the object

is not found, binarySearch returns a negative value.

� Algorithm binarySearch determines this negative value

by first calculating the insertion point and making its by first calculating the insertion point and making its

sign negative.

� Then, binarySearch subtracts 1 from the insertion point

to obtain the return value, which guarantees that

method binarySearch returns positive numbers (>=0) if

and only if the object is found.

Dynamic Data Structures

Algorithm binarySearch

� If multiple elements in the list match the search

key, there is no guarantee which one will be

located first.

� BinarySearchTest.java

– uses the binarySearch algorithm to search for a – uses the binarySearch algorithm to search for a

series of strings in an ArrayList.

Dynamic Data Structures

Algorithm binarySearch

� The program output:
Sorted list: [black, blue, pink, purple, red, tan, white, yellow]

Searching for: black

Found at index 0

Searching for: red

Found at index 4Found at index 4

Searching for: pink

Found at index 2

Searching for: aqua

Not Found (-1)

Searching for: gray

Not Found (-3)

Searching for: teal

Not Found (-7)

Dynamic Data Structures

Algorithms addAll, frequency and disjoint

� addAll
– Insert all elements of an array into a collection

– Takes two arguments, a Collection into which to insert the new
element(s) and an array that provides elements to be inserted

� frequency
– Calculate the number of times a specific element appear in the

collection

– Takes two arguments a Collection to be searched and an
Object to be searched for in the collection

� disjoint
– Algorithm disjoint takes two Collections and returns true if they

have no elements in common

Dynamic Data Structures

Algorithms addAll, frequency and disjoint

� Algorithms2.java

– demonstrates the use of algorithms addAll,

frequency and disjoint.

� The program output:
Before addAll, list2 contains:Before addAll, list2 contains:

black red green

After addAll, list2 contains:

black red green red white yellow blue

Frequency of red in list2: 2

list1 and list2 have elements in common

Stack Class

Dynamic Data Structures

Stacks

� Stacks
– A stack is a constrained version of a linked list

– The link member in the bottom (i.e., last) node of the

stack is set to null to indicate the bottom of the stack.

– Last-In, First-Out (LIFO) data structure

� Method push adds a new node to the top of the stack

� Method pop removes a node from the top of the stack and
returns the data from the popped node

– Program execution stack

� Holds the return addresses of calling methods

� Also contains the local variables for called methods

Dynamic Data Structures

Stack Class

� Stack class in the Java utilities package

java.util implements stack data structure

� Class Stack stores references to objects

� Autoboxing occurs when you add a primitive

type to a Stacktype to a Stack

� Class Stack extends class Vector class to

implement a stack data structure.

Dynamic Data Structures

Stack Class

� Example 1:

– TestStack.java

� The output:

Stack is: -1

Stack is: -1 0 Stack is: -1 0

Stack is: -1 0 1

Stack is: -1 0 1 5

5 popped

Stack is: -1 0 1

1 popped

Stack is: -1 0

Dynamic Data Structures

Stack Class

� Example 2:

– TestStack2.java

� The output:

stack contains: 12 (top)

stack contains: 12 34567 (top) stack contains: 12 34567 (top)

stack contains: 12 34567 1.0 (top)

stack contains: 12 34567 1.0 1234.5678 (top)

1234.5678 popped

stack contains: 12 34567 1.0 (top)

1.0 popped

stack contains: 12 34567 (top)

Dynamic Data Structures

Stack Class

� The constructor creates an empty Stack of type

Number.

� Class Number (in package java.lang) is the

superclass of most wrapper classes (e.g.,

Integer, Double) for the primitive types. Integer, Double) for the primitive types.

� By creating a Stack of Number, objects of any

class that extends the Number class can be

pushed onto the stack.

Dynamic Data Structures

Stack Class

� Any integer literal that has the suffix L is a long

value.

� An integer literal without a suffix is an int value.

� Similarly, any floating-point literal that has the

suffix F is a float value. suffix F is a float value.

� A floating-point literal without a suffix is a

double value.

Dynamic Data Structures

Stack Class

� Because Stack extends Vector, all public

Vector methods can be called on Stack

objects, even if the methods do not represent

conventional stack operations.

� For example, Vector method add can be used � For example, Vector method add can be used

to insert an element anywhere in a stack—an

operation that could “corrupt” the stack.

� When manipulating a Stack, only methods

push and pop should be used to add elements

to and remove elements from the Stack,

respectively.

PriorityQueue Class

Dynamic Data Structures

PriorityQueue Class

� Queue

– Similar to a checkout line in a supermarket

– First-In, First-Out (FIFO) data structure

� Enqueue inserts nodes at the tail (or end)

� Dequeue removes nodes from the head (or front)� Dequeue removes nodes from the head (or front)

– Used to support print spooling

� A spooler program manages the queue of printing jobs

Dynamic Data Structures

PriorityQueue Class

� Interface Queue,

– extends interface Collection and provides additional

operations for inserting, removing and inspecting

elements in a queue.

� Class PriorityQueue, � Class PriorityQueue,

– one of the classes that implements the Queue

interface, orders elements by their natural ordering

– When adding elements to a PriorityQueue, the

elements are inserted in priority order such that the

highest-priority element (i.e., the largest value) will

be the first element removed from the

PriorityQueue.

Dynamic Data Structures

PriorityQueue Class

� The common PriorityQueue operations are
– offer to insert an element at the appropriate location

based on priority order
� Method offer throws a NullPointException if the program attempts to add a

null object to the queue.

– poll to remove the highest-priority element of the priority – poll to remove the highest-priority element of the priority

queue (i.e., the head of the queue),

– peek to get a reference to the highest-priority element of

the priority queue (without removing that element),

– clear to remove all elements in the priority queue and

– size to get the number of elements in the priority queue.

Dynamic Data Structures

PriorityQueue Class

� PriorityQueueTest.java

– demonstrates the PriorityQueue class.

� The program output:

Polling from queue: 3.2 5.4 9.8Polling from queue: 3.2 5.4 9.8

HashSet Class

Dynamic Data Structures

Sets Class

� A Set is a Collection that contains unique

elements (i.e., no duplicate elements),

including:

– HashSet

� Stores elements in hash table� Stores elements in hash table

– TreeSet

� Stores elements in tree

Dynamic Data Structures

HashSets Class

� HashSetTest.java

– Recall that both List and Collection are generic

types, so this program creates a List that contains

String objects, and

– It passes a Collection of Strings to method – It passes a Collection of Strings to method

printNonDuplicates.

� The program output:
ArrayList: [red, white, blue, green, gray, orange, tan, white, cyan,

peach, gray, orange]

Nonduplicates are:

orange green white peach gray cyan red blue tan

References

Dynamic Data Structures

References

� H. M. Deitel and P. J. Deitel, Java™ How to

Program, Sixth Edition, Prentice Hall, 2005.

(Chapter 17 & Chapter 19)

� Y. Daniel Liang, Introduction to Java

Programming, Sixth Edition, Programming, Sixth Edition,

Pearson Education, 2007. (Chapter 21)

The End

