In the name of God

Network Flows

Introduction Introduction

Fall 2010

Instructor: Dr. Masoud Yaghini

Outline

Introduction

• Minimum Cost Flow Problem

- Everywhere we look in our daily lives, networks are apparent.
 - Electrical and power networks
 - Telephone networks
 - National highway systems,
 - Rail networks,
 - Airline service networks
 - Manufacturing and distribution networks
 - Computer networks, such as airline reservation systems

- In all of these problem domains,
 - we wish to move some entity (electricity, a consumer product, a person or a vehicle, a message) from one point to another in an underlying network,
 - and to do so as efficiently as possible,
 - both to provide good service to the users of the network and to use the underlying (and typically expensive) transmission facilities effectively.

- We want to learn:
 - how to model application settings as mathematical objects known as network flow problems
 - Various ways (algorithms) to solve the resulting models.

• Network flows is a problem domain that lies at the several fields including:

- applied mathematics
- computer science
- engineering,
- management
- operations research

- We wish to determine a least cost shipment of a commodity through a network in order to satisfy demands at certain nodes from available supplies at other nodes.
- It is the most fundamental of all network flow problems.
- Some applications:
 - the distribution of a product from manufacturing plants to warehouses, or from warehouses to retailers;
 - the flow of raw material and intermediate goods through the various machining stations in a production line;
 - the routing of automobiles through an urban street network; and the routing of calls through the telephone system.

• Notation:

- G = (N, A) be a directed network defined by a set N of n nodes and a set A of m directed arcs.
- c_{ij} : cost c_{ij} that denotes the cost per unit flow on that arc
- We assume that the flow cost varies linearly with the amount of flow.
- u_{ij} : a capacity that denotes the maximum amount that can flow on the arc
- l_{ij} : a lower bound l_{ij} that denotes the minimum amount that must flow on the arc.

- Notation:
 - b(i): an integer number b(i) representing its supply/demand for each node $i \in \mathbb{N}$
 - If b(i) > 0, node *i* is a supply node;
 - if b(i) < 0, node *i* is a demand node with a demand of b(i);
 - if b(i) = 0, node i is a transshipment node.
 - x_{ij} : arc flows as decision variables

• The minimum cost flow problem is an optimization model formulated as follows:

Minimize $\sum_{(i,j)\in A} c_{ij} x_{ij}$

subject to

$$\sum_{\substack{\{j:(i,j)\in A\}}} x_{ij} - \sum_{\substack{\{j:(j,i)\in A\}}} x_{ji} = b(i) \quad \text{for all } i \in N,$$
$$l_{ij} \le x_{ij} \le u_{ij} \quad \text{for all } (i,j) \in A,$$

where $\sum_{i=1}^{n} b(i) = 0$

• In matrix form, we represent the minimum cost flow problem as follows:

 $\begin{array}{ll} \text{Minimize } cx\\ \text{subject to} & \mathcal{N}x = b,\\ & l \leq x \leq u. \end{array}$

- *N* is an *n* x *m* matrix, called the *node-arc incidence matrix*
- Each column N_{ij} in the matrix corresponds to the variable x_{ij} .
- The column N_{ij} has a +1 in the *i*th row, a -1 in the *j*th row; the rest of its entries are zero.

• Mass balance constraints

$$\sum_{\{j:(i,j)\in A\}} x_{ij} - \sum_{\{j:(j,i)\in A\}} x_{ji} = b(i) \quad \text{for all } i \in N,$$

- The first term in this constraint for a node represents the total *outflow* of the node
- the second term represents the total *inflow* of the node
- The mass balance constraint states that the outflow minus inflow must equal the supply/demand of the node.
- If the node is a supply node, its outflow exceeds its inflow;
 if the node is a demand node, its inflow exceeds its outflow;
 and if the node is a transshipment node, its outflow equals its inflow.

• Flow bound constraints

 $l_{ij} \leq x_{ij} \leq u_{ij}$ for all $(i, j) \in A$,

- The flow must also satisfy the lower bound and capacity constraints
- The flow bounds typically model physical capacities or restrictions imposed on the flows' operating ranges.
- In most applications, the lower bounds on arc flows are zero; therefore, if we do not state lower bounds for any problem, we assume that they have value zero.

• Minimum Cost Flow Problem:

- Shortest path problem
- Maximum flow problem
- Assignment problem
- Transportation problem
- Circulation problem
- Convex cost flow problems
- Generalized flow problems
- Multicommodity flow problems

Shortest path problem

- *Shortest path problem* is the simplest of all network flow problems.
- We wish to find a path of minimum cost (or length) from a specified *source node s* to another specified *sink node t*,
- assuming that each arc (*i*, *j*) ∈ A has an associated cost (or length) c_{ij}.
- Some of the simplest applications:
 - to determine a path between two specified nodes of a network that has minimum length, or
 - a path that takes least time to traverse, or
 - a path that has the maximum reliability.

Shortest path problem

- If we set b(s) = 1, b(t) = -1, and b(i) = 0 for all other nodes in the minimum cost flow problem,
 - the solution to the problem will send 1 unit of flow from node *s* to node *t* along the shortest path.
- The shortest path problem also models situations in which we wish to send flow from a single-source node to a single-sink node in an uncapacitated network.
 - If we wish to send v units of flow from node s to node t and the capacity of each arc of the network is at least v, we would send the flow along a shortest path from node s to node t.

Shortest path problem

- If we want to determine shortest paths from the source node *s* to every other node in the network, then in the minimum cost flow problem we set b(s) = (n 1) and b(i) = -1 for all other nodes.
 - We can set each arc capacity u_{ij} to any number larger than (n 1).
 - The minimum cost flow solution would then send unit flow from node s to every other node *i* along a shortest path.

Maximum flow problem

- The *maximum flow problem* seeks a feasible solution that sends the maximum amount of flow from a specified source node *s* to another specified sink node *t*.
- In the maximum flow problem flow incurs no costs but is restricted by flow bounds.
- If we interpret u_{ij} as the maximum flow rate of arc (*i*, *j*), the maximum flow problem identifies the maximum steady-state flow that the network can send from node *s* to node *t* per unit time.

Maximum flow problem

- Examples of the maximum flow problem include determining the maximum steady-state flow of :
 - petroleum products in a pipeline network
 - cars in a road network
 - messages in a telecommunication network
 - electricity in an electrical network

Assignment problem

- The data of the *assignment problem* consist of two equally sized sets N_1 and N_2 (i.e., $|N_1| = |N_2|$),
- A cost c_{ij} associated with each element $(i, j) \in A$.
- In the assignment problem we wish to pair, at minimum possible cost, each object in N_1 with exactly one object in N_2 .
- Examples of the assignment problem include:
 - assigning people to projects,
 - jobs to machines,
 - tenants to apartments,
 - swimmers to events in a swimming meet, and
 - medical school graduates to available in-

Maximum flow problem

- The assignment problem is a minimum cost flow problem in a network:
 - $G = (N_1 \cup N_2, A)$ with b(i) = 1 for all $i \in N_1$
 - − b(i) = -1 for all $i \in N_2$

- and
$$u_{ij} = 1$$
 for all $(i, j) \in A$.

Transportation problem

- In the *transportation problem* the node set N is partitioned into two subsets N_1 and N_2 (of possibly unequal cardinality) so that
 - (1) each node in N_I is a supply node,
 - (2) each node N_2 is a demand node, and
 - (3) for each arc (i, j) in $A, i \in N_1$ and $j \in N_2$.

Transportation problem

- The classical example:
 - the distribution of goods from warehouses to customers.
 - In this context the nodes in N_1 represent the warehouses,
 - the nodes in N_2 represent customers (or, more typically, customer zones), and
 - an arc (*i*, *j*) in *A* represents a distribution channel from warehouse *i* to customer *j*.

Multicommodity flow problems

- The minimum cost flow problem models the flow of a single commodity over a network.
- *Multicommodity flow problems* arise when several commodities use the same underlying network.
- The commodities may either be differentiated by their physical characteristics or simply by their origin-destination pairs.
- Different commodities have different origins and destinations, and commodities have separate mass balance constraints at each node.

Multicommodity flow problems

- The sharing of the common arc capacities binds the different commodities together.
- In fact, the essential issue addressed by the multicommodity flow problem is the allocation of the capacity of each arc to the individual commodities in a way that minimizes overall flow costs.

Multicommodity flow problems

• Some applications:

- The transportation of passengers from different origins to different destinations within a city;
- The routing of nonhomogeneous tankers (nonhomogeneous- in terms of speed, carrying capability, and operating costs);
- The worldwide shipment of different varieties of grains (such as corn, wheat, rice, and soybeans) from countries that produce grains to those that consume it;
- The transmission of messages in a communication network between different origin-destination pairs.

The End