In the name of God

Network Flows

1. Introduction 1.2 Notation and Definitions

Fall 2010
Instructor: Dr. Masoud Yaghini

Notation and Definitions

- In this section we give several basic definitions from graph theory and present some basic notation.
- We also state some elementary properties of graphs.

Notation and Definitions

- Directed graph
- A directed graph $G=(N, A)$ consists of a set N of nodes and a set A of arcs whose elements are ordered pairs of distinct nodes.

- $N=\{1,2,3,4,5,6,7\}$
$-A=\{(1,2),(1,3),(2,3),(2,4),(3,6),(4,5),(4,7),(5,2)$, $(5,3),(5,7),(6,7)\}$.

Notation and Definitions

- Directed network
- A directed network is a directed graph whose nodes and/or arcs have associated:
- costs
- capacities
- and/or supplies and demands
- We use the terms "graph" and "network" synonymously.
- We let n denote the number of nodes and m denote the number of arcs in G.

Notation and Definitions

- Undirected Graphs
- In an undirected graph arcs are unordered pairs of distinct nodes.

- In an undirected graph, we can refer to an arc joining the node pair i and j as either (i, j) or (j, i).

Notation and Definitions

- Tails and Heads
- A directed arc (i, j) has two endpoints i and j.
- Node i is the tail of arc (i, j) and node j is its head.
- The arc (i, j) emanates from node i and terminates at node j.
- An arc (i, j) is incident to nodes i and j.
- The arc (i, j) is an outgoing arc of node i and an incoming arc of node j.
- Whenever an arc $(i, j) \in A$, we say that node j is adjacent to node i.

Notation and Definitions

- Degrees
- The indegree of a node is the number of incoming arcs of that node and its outdegree is the number of its outgoing arcs.
- The degree of a node is the sum of its indegree and outdegree.
- The sum of indegrees of all nodes equals the sum of outdegrees of all nodes and both are equal to the number of $\operatorname{arcs} m$ in the network.

Notation and Definitions

- Example of degree:

- Node 3 has an indegree of 3 , an outdegree of 1 , and a degree of 4 .

Notation and Definitions

- Adjacency List
- The arc adjacency list $A(i)$ of a node i is the set of arcs emanating from that node, $A(i)=\{(i, j) \in \mathrm{A}: j \in N\}$.
- The node adjacency list $A(i)$ is the set of nodes adjacent to that node; in this case, $A(i)=\{j \in N:(i, j) \in \mathrm{A}\}$.
- We assume that arcs in the adjacency list $A(i)$ are arranged so that the head nodes of arcs are in increasing order.

Notation and Definitions

- Multiarcs and Loops
- Multiarcs are two or more arcs with the same tail and head nodes.
- A loop is an arc whose tail node is the same as its head node.

Notation and Definitions

- Subgraph
- A graph $G^{\prime}=\left(N^{\prime}, A^{\prime}\right)$ is a subgraph of $G=(N, A)$ if $N^{\prime} \subseteq \mathrm{N}$ and $A^{\prime} \subseteq A$.
- We say that $G^{\prime}=\left(N^{\prime}, A^{\prime}\right)$ is the subgraph of G induced by N^{\prime} if A^{\prime} contains each arc of A with both endpoints in N^{\prime}.
- A graph $G^{\prime}=\left(N^{\prime}, A^{\prime}\right)$ is a spanning subgraph of $G=(N, A)$ if $N^{\prime}=N$ and $A^{\prime} \subseteq \mathrm{A}$.

Notation and Definitions

- Walk
- A walk in a directed graph $G=(N, A)$ is a subgraph of G consisting of a sequence of nodes and arcs

$$
i_{1}-a_{1}-i_{2}-a_{2}-\ldots-i_{r-1}-a_{r-1}-i_{r}
$$

- satisfying the property that for all $1 \leq k \leq r-1$,
- either $a_{k}=\left(i_{k}, i_{k+1}\right) \in \mathrm{A}$ or $a_{k}=\left(i_{k+1}, i_{k}\right) \in \mathrm{A}$.
- Alternatively, we shall sometimes refer to a walk as a set of (sequence of) arcs (or of nodes) without any explicit mention of the nodes (without explicit mention of arcs).

Notation and Definitions

(a)

(b)

- (a) 1-2-5-7
- (b) 1-2-4-5-2-3

Notation and Definitions

- Directed Walk
- A directed walk is an oriented version of a walk in the sense that for any two consecutive nodes i_{k} and i_{k+1} on the walk, $\left(i_{k}, i_{k+1}\right) \in \mathrm{A}$.

(a)

(b)
- (a) is not a directed walk
- (b) is a directed walk

Notation and Definitions

- Path
- A path is a walk without any repetition of nodes.
- Directions are ignored.

(a)

(b)
- (a) is a path, 1-2-5-7
- (b) is not a path because it repeats node 2 twice., 1-2-4-5-23

Notation and Definitions

- We can partition the arcs of a path into two groups: forward arcs and backward arcs.

(a)
- The arcs $(1,2)$ and $(5,7)$ are forward arcs and the arc $(5,2)$ is a backward arc.

Notation and Definitions

- Directed Path
- A directed path is a directed walk without any repetition of nodes.
- In other words, a directed path has no backward arcs.
- Directions are important.

Notation and Definitions

- Cycle
- A cycle is a path $i_{1}-i_{2}-\ldots-i_{r}$ together with the $\operatorname{arc}\left(i_{r}, i_{1}\right)$ or $\left(i_{1}, i_{r}\right)$.
- We refer to a cycle using the notation $i_{1}-i_{2}-\ldots-i_{r}-i_{1}$.
- Just as we did for paths, we can define forward and backward arcs in a cycle.
- Directions are ignored.

- The arcs $(5,3)$ and $(3,2)$ are forward arcs and the arc $(5,2)$ is a backward arc of the cycle 2-5-3.

Notation and Definitions

- Directed Cycle
- A directed cycle is a directed path $i_{1}-i_{2}-\ldots-i_{r}$ together with the arc $\left(i_{r}, i_{1}\right)$.
- Directions are important.

(a)

(b)
- (a) is a cycle, but not a directed cycle;
- (b) is a directed cycle.

Notation and Definitions

- Acyclic Graph
- A graph is a acyclic if it contains no directed cycle.

Notation and Definitions

- Connectivity
- We will say that two nodes i and j are connected if the graph contains at least one path from node i to node j.
- A graph is connected if every pair of its nodes is connected; otherwise, the graph is disconnected.

(a)

(b)
- (a) is connected graph, and (b) is disconnected graph

Notation and Definitions

- Components
- We refer to the maximal connected subgraphs of a disconnected network as its components.

- This graph has two components consisting of the node sets $\{1,2,3,4\}$ and $\{5,6\}$.

Notation and Definitions

- Strong Connectivity
- A connected graph is strongly connected if it contains at least one directed path from every node to every other node.

- A strongly connected graph

Notation and Definitions

- Cut
- A cut is a partition of the node set N into two parts, S and $\bar{S}=N-S$.
- Each cut defines a set of arcs consisting of those arcs that have one endpoint in S and another endpoint in \bar{S}.
- We refer to this set of arcs as a cut and represent it by the notation $[S, \bar{S}]$.

Notation and Definitions

- A cut with $S=\{1,2,3\}$ and $\bar{S}=\{4,5,6,7\}$.
- The set of arcs in this cut are $\{(2,4),(5,2),(5,3),(3,6)\}$.

Notation and Definitions

- s-t Cut
- An s - t cut is defined with respect to two distinguished nodes s and t, and is a cut $[S, \bar{S}]$ satisfying the property that $s \in S$ and $t \in \bar{S}$.

- If $s=1$ and $t=6$, this cut is an $s-t$ cut;
- but if $\mathrm{s}=1$ and $\mathrm{t}=3$, this cut is not an s - t cut.

Notation and Definitions

- Tree
- A tree is a connected graph that contains no cycle.
- Property
- (a) A tree on n nodes contains exactly $n-1$ arcs.
- (b) A tree has at least two leaf nodes (i.e., nodes with degree 1).
- (c) Every two nodes of a tree are connected by a unique path.

Notation and Definitions

- Two examples of trees

Notation and Definitions

- Forest
- A graph that contains no cycle is a forest.
- Alternatively, a forest is a collection of trees.

$\$ \%$

- an example of a forest.

Notation and Definitions

- Subtree
- A connected subgraph of a tree is a subtree.

Notation and Definitions

- Rooted Tree
- A rooted tree is a tree with a specially designated node, called its root; we regard a rooted tree as though it were hanging from its root.

- an instance of a rooted tree; node 1 is the root node.

Notation and Definitions

- We often view the arcs in a rooted tree as defining predecessor-successor (or parent-child) relationships.

- Node 5 is the predecessor of nodes 6 and 7,
- Node 1 is the predecessor of nodes 2,4 , and 5 .

Notation and Definitions

- Each node i (except the root node) has a unique predecessor, which is the next node on the unique path in the tree from that node to the root;
- We store the predecessor of node i using a predecessor index $\operatorname{pred}(i)$.
- If $j=\operatorname{pred}(i)$, we say that node j is the predecessor of node i and node i is a successor of node j.
- These predecessor indices uniquely define a rooted tree and also allow us to trace out the unique path from any node back to the root.

Notation and Definitions

- There are two special type of rooted trees, called a directed in-tree and a directed out-tree.

Notation and Definitions

- Directed-Out- Tree
- A tree is a directed out-tree routed at node s if the unique path in the tree from node s to every other node is a directed path.

- an instance of a directed out-tree rooted at node 1.
- Observe that every node in the directed outtree (except node 1) has indegree 1.

Notation and Definitions

- Directed-In-Tree
- A tree is a directed in-tree routed at node s if the unique path in the tree from any node to node s is a directed path.

- an instance of a directed in-tree rooted at node 1 .
- Observe that every node in the directed in-tree (except node 1) has outdegree 1 .

Notation and Definitions

- Spanning Tree
- A tree T is a spanning tree of G if T is a spanning subgraph of G.
- Every spanning tree of a connected n-node graph G has (n 1) arcs.
- We refer to the arcs belonging to a spanning tree T as tree arcs and arcs not belonging to T as nontree arcs.

Notation and Definitions

- two spanning trees of the graph

(a)

(b)

Notation and Definitions

- Undirected networks
- An undirected arc (i, j) has two endpoints, i and j, but its tail and head nodes are undefined.
- If the network contains the arc (i, j), node i is adjacent to node j, and node j is adjacent to node i.

The End

