
In the name of GodIn the name of God

Network Flows

1. Introduction

1.3 Network Representations1.3 Network Representations

Fall 2010
Instructor: Dr. Masoud Yaghini

Network Representations

� The performance of a network algorithm depends:

– the algorithm

– the data structures

� Data structure

– The manner used to represent the network within a

computer and the storage scheme used for maintaining and computer and the storage scheme used for maintaining and

updating the intermediate results.

Network Representations

� In representing a network, we need to store two types

of information:

– (1) the network topology, that is, the network's node and arc

structure; and

– (2) data such as costs, capacities, and supplies/demands

associated with the network's nodes and arcs. associated with the network's nodes and arcs.

� Usually the scheme we use to store the network's

topology will suggest a natural way for storing the

associated node and arc information.

Network Representations

� Network Representations

– Node-Arc Incidence Matrix

– Node-Node Adjacency Matrix

– Adjacency Lists

– Forward and Reverse Star Representations

– Compact Forward and Reverse Star Representation– Compact Forward and Reverse Star Representation

Node-Arc Incidence Matrix

Node-Arc Incidence Matrix

� Node-arc incidence matrix / incidence matrix

– It represents a network as the constraint matrix of the

minimum cost flow problem

– It stores the network as an n x m matrix N

– It contains one row for each node of the network and one

column for each arc. column for each arc.

– The column corresponding to arc (i, j) has only two nonzero

elements: It has a ‘+1’ in the row corresponding to node i

and a ‘-1’ in the row corresponding to node j.

Minimum Cost Flow Problem

� Minimum Cost Flow Problem

� In matrix form

Node-Arc Incidence Matrix

Node-Arc Incidence Matrix

� The node-arc incidence matrix has a very special

structure

– Only 2m out of its nm entries are nonzero,

– all of its nonzero entries are +1 or -1, and

– each column has exactly one +1 and one -1.

– the number of + l's in a row equals the outdegree of the – the number of + l's in a row equals the outdegree of the

corresponding node and the number of -1 's in the row

equals the indegree of the node.

Node-Arc Incidence Matrix

� Because the node-arc incidence matrix N contains so

few nonzero coefficients, the incidence matrix

representation of a network is not space efficient.

� More efficient schemes would merely keep track of

the nonzero entries in the matrix.

The node-arc incidence matrix rarely produces � The node-arc incidence matrix rarely produces

efficient algorithms.

� This representation is important because

– it represents the constraint matrix of the minimum cost flow

problem and

– the node-arc incidence matrix possesses several interesting

theoretical properties.

Node-Node Adjacency Matrix

Node-Node Adjacency Matrix

� Node-node adjacency matrix / adjacency matrix

– It stores the network as an n x n matrix H = {hij}.

– The matrix has a row and a column corresponding to every

node

– Its ijth entry hij equals 1 if (i, j) œ A and equals 0 otherwise.

Node-Node Adjacency Matrix

Node-Node Adjacency Matrix

� If we wish to store arc costs and capacities as well as

the network topology, we can store this information in

two additional n x n matrices L and U

� The adjacency matrix has n2 elements, only m of

which are nonzero.

Consequently, this representation is space efficient � Consequently, this representation is space efficient

only if the network is sufficiently dense; for sparse

networks this representation wastes considerable

space.

� The simplicity of the adjacency representation permits

us to use it to implement most network algorithms

rather easily.

Node-Node Adjacency Matrix

� We can determine the cost or capacity of any arc

� (i, j) simply by looking up the ijth element in the

matrix Lor U.

� We can obtain the arcs emanating from node i by

scanning row i

– If the jth element in this row has a nonzero entry, (i, j) is an

arc of the network.

� Similarly, we can obtain the arcs entering node j by

scanning column j

– If the ith element of this column has a nonzero entry, (i, j) is

an arc of the network.

Node-Node Adjacency Matrix

� These steps permit us to identify all the outgoing or

incoming arcs of a node in time proportional to n.

� For dense networks we can usually afford to spend

this time to identify the incoming or outgoing arcs

� For sparse networks these steps might be the

bottleneck operations for an algorithm. bottleneck operations for an algorithm.

Adjacency Lists

Adjacency Lists

� We defined before:

– The arc adjacency list A(i) of a node i as the set of arcs

emanating from that node

– The node adjacency list of a node i as the set of nodes j for

which (i, j) œ A.

� Adjacency list� Adjacency list

– It stores the node adjacency list of each node as a singly

linked list.

– A linked list is a collection of cells each containing one or

more fields.

Adjacency Lists

� The node adjacency list for node i will be a linked list

having | A(i) | cells and each cell will correspond to an

arc (i, j) œ A.

� Each cell corresponding to the arc (i, j) will have:

– One data field will store node j.

– Two other data fields to store the arc cost cij and the arc

capacity uij.

– One additional link field, which stores a pointer to the next

cell in the adjacency list.

� If a cell happens to be the last cell in the adjacency list, by

convention we set its link to value zero.

� We also need an array of pointers that point to the first

cell in each linked list.

Adjacency Lists

Forward and Reverse Star

RepresentationsRepresentations

Forward and Reverse Star Representations

� Forward star representation

– It stores the node adjacency list of each node.

– It is similar to the adjacency list representation, but instead

of maintaining these lists as linked lists, it stores them in a

single array.

– It provides us with an efficient means for determining the – It provides us with an efficient means for determining the

set of outgoing arcs of any node.

Forward and Reverse Star Representations

� To develop this representation,

– We first associate a unique sequence number with each arc, thus

defining an ordering of the arc list.

– We number the arcs in a specific order:

� first those emanating from node 1, then

� those emanating from node 2, and so on.

– We number the arcs emanating from the same node in an arbitrary – We number the arcs emanating from the same node in an arbitrary

fashion.

– We then sequentially store information about each arc in the arc list.

– We store the tails, heads, costs, and capacities of the arcs in four arrays:

tail, head, cost, and capacity.

– If arc (i, j) is arc number 20, we store the tail, head, cost, and capacity

data for this arc in the array positions tail(20), head(20), cost(20), and

capacity(20).

Forward and Reverse Star Representations

� A pointer

– We also maintain a pointer with each node i, denoted by

point(i), that indicates the smallest-numbered arc in the arc

list that emanates from node i.

– If node i has no outgoing arcs, we set point(i) equal to

point(i + 1). point(i + 1).

– Therefore, the outgoing arcs of node i at positions point(i)

to (point(i + 1) - 1) in the arc list.

– If point(i) > point(i + 1) - 1, node i has no outgoing arc.

– For consistency, we set point(1) = 1 and point(n + 1) = m +

1.

Forward and Reverse Star Representations

Forward and Reverse Star Representations

� Reverse star representation

– To determine the set of incoming arcs of any node

efficiently

� To develop a reverse star representation

– We examine the nodes i = 1 to n in order and sequentially store the

heads, tails, costs, and capacities of the incoming arcs at node i. heads, tails, costs, and capacities of the incoming arcs at node i.

– We maintain a reverse pointer with each node i, denoted by rpoint(i),

which denotes the first position in these arrays that contains information

about an incoming arc at node i.

– If node i has no incoming arc, we set rpoint(i) equal to rpoint(i + 1).

– For consistency, we set rpoint(1) = 1 and rpoint(n +. 1) = m + 1.

– As before, we store the incoming arcs at node i at positions rpoint(i) to

(rpoint(i + 1) - 1).

Forward and Reverse Star Representations

Compact Forward and Reverse Star

RepresentationRepresentation

Forward and Reverse Star Representations

� Observe that by storing both the forward and reverse

star representations

– We will maintain a significant amount of duplicate

information.

– We can avoid this duplication by storing arc numbers in the

reverse star instead of the tails, heads, costs, and capacities reverse star instead of the tails, heads, costs, and capacities

of the arcs.

� So instead of storing the tails, costs, and capacities of

the arcs, we simply store arc numbers;

– and once we know the arc numbers, we can always retrieve

the associated information from the forward star

representation.

– We store arc numbers in an array trace of size m.

Forward and Reverse Star Representations

� Compact forward and reverse star representation

Forward and Reverse Star Representations

� As an illustration,

– arc (3, 2) has arc number 4 in the forward star

representation and

– arc (1, 2) has an arc number 1 in the forward star

representation

Forward Star vs. Adjacency List

� Forward star representation

– The major advantage is its space efficiency.

– It requires less storage than does the adjacency list

representation.

– It is easier to implement in languages such as FORTRAN

that have no natural provisions for using linked lists. that have no natural provisions for using linked lists.

Node-Node Adjacency Matrix

� Adjacency list

– The major advantage its ease of implementation in

languages such as C or Java that are able to manipulate

linked lists efficiently.

– Further, using an adjacency list representation, we can add

or delete arcs (as well as nodes) in constant time. or delete arcs (as well as nodes) in constant time.

– On the other hand, in the forward star representation these

steps require time proportional to m, which can be too time

consuming.

Summary

The End

