Network Flows

1. Introduction

1.3 Network Representations

Fall 2010

Instructor: Dr. Masoud Yaghini
Network Representations

- The performance of a network algorithm depends:
 - the algorithm
 - the data structures

- **Data structure**
 - The manner used to represent the network within a computer and the storage scheme used for maintaining and updating the intermediate results.
Network Representations

- In representing a network, we need to store two types of information:
 - (1) the network topology, that is, the network's node and arc structure; and
 - (2) data such as costs, capacities, and supplies/demands associated with the network's nodes and arcs.

- Usually the scheme we use to store the network's topology will suggest a natural way for storing the associated node and arc information.
Network Representations

- Node-Arc Incidence Matrix
- Node-Node Adjacency Matrix
- Adjacency Lists
- Forward and Reverse Star Representations
- Compact Forward and Reverse Star Representation
Node-Arc Incidence Matrix
Node-Arc Incidence Matrix

- **Node-arc incidence matrix / incidence matrix**
 - It represents a network as the constraint matrix of the minimum cost flow problem
 - It stores the network as an \(n \times m \) matrix \(N \)
 - It contains one row for each node of the network and one column for each arc.
 - The column corresponding to arc \((i, j)\) has only two nonzero elements: It has a ‘+1’ in the row corresponding to node \(i\) and a ‘-1’ in the row corresponding to node \(j\).
Minimum Cost Flow Problem

- Minimum Cost Flow Problem

Minimize \[\sum_{(i, j) \in A} c_{ij}x_{ij} \]

subject to

\[\sum_{\{j: (i, j) \in A\}} x_{ij} - \sum_{\{j: (j, i) \in A\}} x_{ji} = b(i) \quad \text{for all } i \in N, \]

\[l_{ij} \leq x_{ij} \leq u_{ij} \quad \text{for all } (i, j) \in A, \]

- In matrix form

Minimize \[cx \]

subject to \[Nx = b, \]

\[l \leq x \leq u. \]
Node-Arc Incidence Matrix

\[
\begin{bmatrix}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 1 & -1 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 1 & 1 & 1 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 1 & 1 & 1 & 0
\end{bmatrix}
\]
The node-arc incidence matrix has a very special structure

- Only $2m$ out of its nm entries are nonzero,
- all of its nonzero entries are +1 or -1, and
- each column has exactly one +1 and one -1.
- the number of +1's in a row equals the outdegree of the corresponding node and the number of -1's in the row equals the indegree of the node.
Node-Arc Incidence Matrix

- Because the node-arc incidence matrix \mathbf{N} contains so few nonzero coefficients, the incidence matrix representation of a network is not space efficient.

- More efficient schemes would merely keep track of the nonzero entries in the matrix.

- The node-arc incidence matrix rarely produces efficient algorithms.

- This representation is important because
 - it represents the constraint matrix of the minimum cost flow problem and
 - the node-arc incidence matrix possesses several interesting theoretical properties.
Node-Node Adjacency Matrix
Node-Node Adjacency Matrix

- **Node-node adjacency matrix / adjacency matrix**
 - It stores the network as an $n \times n$ matrix $\mathcal{H} = \{h_{ij}\}$.
 - The matrix has a row and a column corresponding to every node.
 - Its ijth entry h_{ij} equals 1 if $(i, j) \in A$ and equals 0 otherwise.
Node-Node Adjacency Matrix

\[
\begin{pmatrix}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 0
\end{pmatrix}
\]
Node-Node Adjacency Matrix

- If we wish to store **arc costs** and **capacities** as well as the network topology, we can store this information in two additional $n \times n$ matrices \mathcal{L} and \mathcal{U}.

- The adjacency matrix has n^2 elements, only m of which are nonzero.

- Consequently, this representation is space efficient only if the network is sufficiently dense; for sparse networks this representation wastes considerable space.

- The simplicity of the adjacency representation permits us to use it to implement most network algorithms rather easily.
Node-Node Adjacency Matrix

- We can determine the cost or capacity of any arc
 \((i, j)\) simply by looking up the \(ij\)th element in the matrix \(L\) or \(U\).
- We can obtain the arcs emanating from node \(i\) by scanning row \(i\)
 - If the \(j\)th element in this row has a nonzero entry, \((i, j)\) is an arc of the network.
- Similarly, we can obtain the arcs entering node \(j\) by scanning column \(j\)
 - If the \(i\)th element of this column has a nonzero entry, \((i, j)\) is an arc of the network.
Node-Node Adjacency Matrix

- These steps permit us to identify all the outgoing or incoming arcs of a node in time proportional to n.
- For **dense networks** we can usually afford to spend this time to identify the incoming or outgoing arcs.
- For **sparse networks** these steps might be the bottleneck operations for an algorithm.
Adjacency Lists
Adjacency Lists

We defined before:

- The *arc adjacency list* $A(i)$ of a node i as the set of arcs emanating from that node.
- The *node adjacency list* of a node i as the set of nodes j for which $(i, j) \in A$.

Adjacency list

- It stores the *node adjacency list* of each node as a *singly linked list*.
- A *linked list* is a collection of cells each containing one or more fields.
Adjacency Lists

- The node adjacency list for node i will be a linked list having $|A(i)|$ cells and each cell will correspond to an arc $(i, j) \in A$.

- Each cell corresponding to the arc (i, j) will have:
 - One data field will store node j.
 - Two other data fields to store the arc cost c_{ij} and the arc capacity u_{ij}.
 - One additional link field, which stores a pointer to the next cell in the adjacency list.
 - If a cell happens to be the last cell in the adjacency list, by convention we set its link to value zero.

- We also need an array of pointers that point to the first cell in each linked list.
Adjacency Lists
Forward and Reverse Star Representations
Forward and Reverse Star Representations

- **Forward star representation**
 - It stores the node adjacency list of each node.
 - It is similar to the *adjacency list* representation, but instead of maintaining these lists as linked lists, it stores them in a *single array*.
 - It provides us with an efficient means for determining the set of outgoing arcs of any node.
Forward and Reverse Star Representations

- To develop this representation,
 - We first associate a unique sequence number with each arc, thus defining an ordering of the arc list.
 - We number the arcs in a specific order:
 ◆ first those emanating from node 1, then
 ◆ those emanating from node 2, and so on.
 - We number the arcs emanating from the same node in an arbitrary fashion.
 - We then sequentially store information about each arc in the arc list.
 - We store the tails, heads, costs, and capacities of the arcs in four arrays: \textit{tail, head, cost, and capacity}.
 - If arc \((i, j)\) is arc number 20, we store the tail, head, cost, and capacity data for this arc in the array positions \text{tail}(20), \text{head}(20), \text{cost}(20), \text{and capacity}(20).
Forward and Reverse Star Representations

- A pointer
 - We also maintain a pointer with each node \(i \), denoted by \(\text{point}(i) \), that indicates the smallest-numbered arc in the arc list that emanates from node \(i \).
 - If node \(i \) has no outgoing arcs, we set \(\text{point}(i) \) equal to \(\text{point}(i + 1) \).
 - Therefore, the outgoing arcs of node \(i \) at positions \(\text{point}(i) \) to \((\text{point}(i + 1) - 1) \) in the arc list.
 - If \(\text{point}(i) > \text{point}(i + 1) - 1 \), node \(i \) has no outgoing arc.
 - For consistency, we set \(\text{point}(1) = 1 \) and \(\text{point}(n + 1) = m + 1 \).
Forward and Reverse Star Representations

```
point | tail | head | cost | capacity
----- |------|------|------|---------
1     | 1    | 2    | 25   | 30      
2     | 1    | 3    | 35   | 50      
3     | 2    | 4    | 15   | 40      
4     | 3    | 2    | 45   | 10      
5     | 4    | 3    | 15   | 30      
6     | 4    | 5    | 45   | 60      
7     | 5    | 3    | 25   | 20      
8     | 5    | 4    | 35   | 50      
```
Forward and Reverse Star Representations

- **Reverse star representation**
 - To determine the set of incoming arcs of any node efficiently

- To develop a reverse star representation
 - We examine the nodes $i = 1$ to n in order and sequentially store the heads, tails, costs, and capacities of the incoming arcs at node i.
 - We maintain a reverse pointer with each node i, denoted by $rpoint(i)$, which denotes the first position in these arrays that contains information about an incoming arc at node i.
 - If node i has no incoming arc, we set $rpoint(i)$ equal to $rpoint(i + 1)$.
 - For consistency, we set $rpoint(1) = 1$ and $rpoint(n + 1) = m + 1$.
 - As before, we store the incoming arcs at node i at positions $rpoint(i)$ to $(rpoint(i + 1) - 1)$.
Forward and Reverse Star Representations

![Graph]

<table>
<thead>
<tr>
<th></th>
<th>cost</th>
<th>capacity</th>
<th>tail</th>
<th>head</th>
<th>rpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>45</td>
<td>10</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>30</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>35</td>
<td>50</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>30</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>20</td>
<td>5</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>35</td>
<td>50</td>
<td>5</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td>40</td>
<td>2</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>45</td>
<td>60</td>
<td>4</td>
<td>5</td>
<td>8</td>
</tr>
</tbody>
</table>
Compact Forward and Reverse Star Representation
Forward and Reverse Star Representations

- Observe that by storing both the forward and reverse star representations
 - We will maintain a significant amount of duplicate information.
 - We can avoid this duplication by storing arc numbers in the reverse star instead of the tails, heads, costs, and capacities of the arcs.

- So instead of storing the tails, costs, and capacities of the arcs, we simply store arc numbers;
 - and once we know the arc numbers, we can always retrieve the associated information from the forward star representation.
 - We store arc numbers in an array $trace$ of size m.
Forward and Reverse Star Representations

- Compact forward and reverse star representation

<table>
<thead>
<tr>
<th>point</th>
<th>tail</th>
<th>head</th>
<th>cost</th>
<th>capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>35</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>4</td>
<td>15</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>45</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>5</td>
<td>45</td>
<td>60</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>3</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>4</td>
<td>35</td>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>trace</th>
<th>rpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
</tr>
</tbody>
</table>
Forward and Reverse Star Representations

- As an illustration,
 - arc (3, 2) has arc number 4 in the forward star representation and
 - arc (1, 2) has an arc number 1 in the forward star representation
Forward Star vs. Adjacency List

- **Forward star representation**
 - The major advantage is its space efficiency.
 - It requires less storage than does the **adjacency list** representation.
 - It is easier to implement in languages such as FORTRAN that have no natural provisions for using linked lists.
Node-Node Adjacency Matrix

- **Adjacency list**
 - The major advantage is its ease of implementation in languages such as C or Java that are able to manipulate linked lists efficiently.
 - Further, using an adjacency list representation, we can add or delete arcs (as well as nodes) in constant time.
 - On the other hand, in the forward star representation, these steps require time proportional to m, which can be too time consuming.
Summary

<table>
<thead>
<tr>
<th>Network representations</th>
<th>Storage space</th>
<th>Features</th>
</tr>
</thead>
</table>
| Node–arc incidence matrix | nm | 1. Space inefficient
2. Too expensive to manipulate
3. Important because it represents the constraint matrix of the minimum cost flow problem |
| Node–node adjacency matrix | kn^2 for some constant k | 1. Suited for dense networks
2. Easy to implement |
| Adjacency list | $k_1n + k_2m$ for some constants k_1 and k_2 | 1. Space efficient
2. Efficient to manipulate
3. Suited for dense as well as sparse networks |
| Forward and reverse star | $k_3n + k_4m$ for some constants k_3 and k_4 | 1. Space efficient
2. Efficient to manipulate
3. Suited for dense as well as sparse networks |
The End