In the name of God

Network Flows

1. Introduction 1.3 Network Representations

Fall 2010

Instructor: Dr. Masoud Yaghini

Network Representations

- The performance of a network algorithm depends:
 - the algorithm
 - the data structures

Data structure

 The manner used to represent the network within a computer and the storage scheme used for maintaining and updating the intermediate results.

Network Representations

- In representing a network, we need to store two types of information:
 - (1) the network topology, that is, the network's node and arc structure; and
 - (2) data such as costs, capacities, and supplies/demands associated with the network's nodes and arcs.
- Usually the scheme we use to store the network's topology will suggest a natural way for storing the associated node and arc information.

Network Representations

- Network Representations
 - Node-Arc Incidence Matrix
 - Node-Node Adjacency Matrix
 - Adjacency Lists
 - Forward and Reverse Star Representations
 - Compact Forward and Reverse Star Representation

• Node-arc incidence matrix / incidence matrix

- It represents a network as the constraint matrix of the minimum cost flow problem
- It stores the network as an $n \times m$ matrix N
- It contains one row for each node of the network and one column for each arc.
- The column corresponding to arc (*i*, *j*) has only two nonzero elements: It has a '+1' in the row corresponding to node *i* and a '-1' in the row corresponding to node *j*.

Minimum Cost Flow Problem

Minimum Cost Flow Problem

Minimize $\sum_{(i,j)\in A} c_{ij} x_{ij}$

subject to

$$\sum_{\substack{\{j:(i,j)\in A\}}} x_{ij} - \sum_{\substack{\{j:(j,i)\in A\}}} x_{ji} = b(i) \quad \text{for all } i \in N,$$
$$l_{ij} \le x_{ij} \le u_{ij} \quad \text{for all } (i,j) \in A,$$

• In matrix form

Minimize cx

subject to $\mathcal{N}x = b$, $l \le x \le u$.

- The node-arc incidence matrix has a very special structure
 - Only 2*m* out of its *nm* entries are nonzero,
 - all of its nonzero entries are +1 or -1, and
 - each column has exactly one +1 and one -1.
 - the number of + l's in a row equals the outdegree of the corresponding node and the number of -1 's in the row equals the indegree of the node.

- Because the node-arc incidence matrix *N* contains **so few nonzero coefficients**, the incidence matrix representation of a network is not space efficient.
- More efficient schemes would merely keep track of the nonzero entries in the matrix.
- The node-arc incidence matrix rarely produces efficient algorithms.
- This representation is important because
 - it represents the constraint matrix of the minimum cost flow problem and
 - the node-arc incidence matrix possesses several interesting theoretical properties.

• Node-node adjacency matrix / adjacency matrix

- It stores the network as an $n \times n$ matrix $\mathcal{H} = \{h_{ij}\}$.
- The matrix has a row and a column corresponding to every node
- Its *ij*th entry h_{ij} equals 1 if $(i, j) \in A$ and equals 0 otherwise.

	1	2	3	4	5
1	0	1	1	0	0
2	0	0	0	1	0
3	0	1	0	0	0
4	0	0	1	0	1
5	0	0	1	1	0

- If we wish to store **arc costs** and **capacities** as well as the network topology, we can store this information in two additional *n* x *n* matrices *L* and *U*
- The adjacency matrix has *n*² elements, only *m* of which are nonzero.
- Consequently, this representation is space efficient only if the network is sufficiently dense; for sparse networks this representation wastes considerable space.
- The simplicity of the adjacency representation permits us to use it to implement most network algorithms rather easily.

- We can determine the cost or capacity of any arc
- (*i*, *j*) simply by looking up the *ij*th element in the matrix *L*or *U*.
- We can obtain the arcs emanating from node *i* by scanning row *i*
 - If the jth element in this row has a nonzero entry, (i, j) is an arc of the network.
- Similarly, we can obtain the arcs entering node *j* by scanning column *j*
 - If the *i*th element of this column has a nonzero entry, (i, j) is an arc of the network.

- These steps permit us to identify all the outgoing or incoming arcs of a node in time proportional to *n*.
- For **dense networks** we can usually afford to spend this time to identify the incoming or outgoing arcs
- For sparse networks these steps might be the bottleneck operations for an algorithm.

- We defined before:
 - The *arc adjacency list* A(i) of a node i as the set of arcs emanating from that node
 - The *node adjacency list* of a node *i* as the set of nodes *j* for which $(i, j) \in A$.
- Adjacency list
 - It stores the *node adjacency list* of each node as a *singly linked list*.
 - A *linked list* is a collection of cells each containing one or more fields.

- The node adjacency list for node *i* will be a linked list having |A(i)| cells and each cell will correspond to an arc $(i, j) \in A$.
- Each cell corresponding to the arc (*i*, *j*) will have:
 - One data field will store node *j*.
 - Two other data fields to store the *arc cost* c_{ij} and the *arc capacity* u_{ij} .
 - One additional *link* field, which stores a pointer to the next cell in the adjacency list.
 - If a cell happens to be the last cell in the adjacency list, by convention we set its link to value zero.
- We also need an array of pointers that point to the first cell in each linked list.

• Forward star representation

- It stores the node adjacency list of each node.
- It is similar to the *adjacency list* representation, but instead of maintaining these lists as linked lists, it stores them in a *single array*.
- It provides us with an efficient means for determining the set of outgoing arcs of any node.

- To develop this representation,
 - We first associate a unique sequence number with each arc, thus defining an ordering of the arc list.
 - We number the arcs in a specific order:
 - first those emanating from node 1, then
 - those emanating from node 2, and so on.
 - We number the arcs emanating from the same node in an arbitrary fashion.
 - We then sequentially store information about each arc in the arc list.
 - We store the tails, heads, costs, and capacities of the arcs in four arrays: *tail, head, cost*, and *capacity*.
 - If arc (i, j) is arc number 20, we store the tail, head, cost, and capacity data for this arc in the array positions tail(20), head(20), cost(20), and capacity(20).

• A pointer

- We also maintain a pointer with each node *i*, denoted by *point(i)*, that indicates the smallest-numbered arc in the arc list that emanates from node *i*.
- If node *i* has no outgoing arcs, we set *point*(*i*) equal to *point*(*i* + 1).
- Therefore, the outgoing arcs of node *i* at positions *point(i)* to (*point(i + 1) 1*) in the arc list.
- If point(i) > point(i + 1) 1, node *i* has no outgoing arc.
- For consistency, we set point(1) = 1 and point(n + 1) = m + 1.

• Reverse star representation

- To determine the set of incoming arcs of any node efficiently
- To develop a reverse star representation
 - We examine the nodes i = 1 to n in order and sequentially store the heads, tails, costs, and capacities of the incoming arcs at node i.
 - We maintain a reverse pointer with each node i, denoted by *rpoint(i)*, which denotes the first position in these arrays that contains information about an incoming arc at node *i*.
 - If node *i* has no incoming arc, we set rpoint(i) equal to rpoint(i + 1).
 - For consistency, we set rpoint(1) = 1 and rpoint(n + . 1) = m + 1.
 - As before, we store the incoming arcs at node i at positions rpoint(i) to (rpoint(i + 1) 1).

cost	capacity	tail	head	_	rpoint	
45	10	3	2	1	1	1
 25	30	1	2	2	1	2
35	50	1	3	3	3	3
15	30	4	3	4	6	4
25	20	5	3	5	8	5
35	50 .	5	4	6	9	6
15	40	2	4	7		-
45	60	4	5	8		

Compact Forward and Reverse Star Representation

- Observe that by storing both the forward and reverse star representations
 - We will maintain a significant amount of duplicate information.
 - We can avoid this duplication by storing arc numbers in the reverse star instead of the tails, heads, costs, and capacities of the arcs.
- So instead of storing the tails, costs, and capacities of the arcs, we simply store arc numbers;
 - and once we know the arc numbers, we can always retrieve the associated information from the forward star representation.
 - We store arc numbers in an array *trace* of size *m*.

• Compact forward and reverse star representation

	point		tail	head	cost	capacity	 trace	•	rpoint	•
1	1	1	1	2	25	30	4	1	1	1
2	3	2	1	3	35	50	1	2	1	2
3	4	3	2	4	15	40	2	3	3	3
4	5	4	3	2	45	10	5	4	6	4
5	7	5	4	3	15	30	7	5	8	5
6	9	6	4	5	45	60	8	6	9	6
		7	5	3	25	20	3	7		
		8	5	4	35	50	6	8		

- As an illustration,
 - arc (3, 2) has arc number 4 in the forward star representation and
 - arc (1, 2) has an arc number 1 in the forward star representation

Forward Star vs. Adjacency List

• Forward star representation

- The major advantage is its space efficiency.
- It requires less storage than does the **adjacency list** representation.
- It is easier to implement in languages such as FORTRAN that have no natural provisions for using linked lists.

• Adjacency list

- The major advantage its ease of implementation in languages such as C or Java that are able to manipulate linked lists efficiently.
- Further, using an adjacency list representation, we can add or delete arcs (as well as nodes) in constant time.
- On the other hand, in the forward star representation these steps require time proportional to *m*, which can be too time consuming.

Summary

Network representations	Storage space	Features
Node-arc incidence matrix	nm	 Space inefficient Too expensive to manipulate Important because it represents the constraint matrix of the minimum cost flow problem
Node-node adjacency matrix	kn^2 for some constant k	 Suited for dense networks Easy to implement
Adjacency list	$k_1n + k_2m$ for some constants k_1 and k_2	 Space efficient Efficient to manipulate Suited for dense as well as sparse networks
Forward and reverse star	$k_{3}n + k_{4}m$ for some constants k_{3} and k_{4}	 Space efficient Efficient to manipulate Suited for dense as well as sparse networks

The End