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Introduction 



Search Algorithms

� Search algorithms

– fundamental graph techniques that attempt to find all the 

nodes in a network 

– Different variants of search algorithms lie at the heart of 

many maximum flow and minimum cost flow algorithms. 



Search Algorithms

� The applications of search algorithms:

– to find all nodes in a network that are reachable by directed 

paths from a specific node, 

– to find all the nodes in a network that can reach a specific 

node t along directed paths, 

– To identify all connected components of a network– To identify all connected components of a network

– to identify a directed cycle in a network

– to reorder the nodes 1, 2, ... , n so that for each arc (i, j) œ A, 

i < j (topological ordering), if the network is acyclic



Search Algorithms

� We wish to find all the nodes in a network G = (N, A) 

that are reachable along directed paths from a 

distinguished node s, called the source. 

� A search algorithm fans out from the source and 

identifies an increasing number of nodes that are 

reachable from the source. reachable from the source. 

� Marked vs. unmarked node

– At every intermediate point in its execution, the search 

algorithm designates all the nodes in the network as being 

in one of the two states: marked or unmarked. 

– The marked nodes are known to be reachable from the 

source, and the status of unmarked nodes has yet to be 

determined. 



Search Algorithms

� If node i is marked, node j is unmarked, and the 

network contains the arc (i, j), we can mark node j

� It is reachable from source via a directed path to node 

i plus arc (i, j). 

� Admissible vs. inadmissible arc

– Let us refer to arc (i, j) as admissible arc if node i is marked 

and node j is unmarked, 

– and refer to it as inadmissible arc otherwise. 

� Initially, we mark only the source node. 

� Subsequently, by examining admissible arcs, the 

search algorithm will mark additional nodes. 



Search Algorithms

� Predecessor node

– Whenever the procedure marks a new node j by examining 

an admissible arc (i, j), we say that node i is a predecessor

of node j [i.e., pred(j) = i]. 

� The algorithm terminates when the network contains 

no admissible arcs.no admissible arcs.

� The search algorithm traverses the marked nodes in a 

certain order. 

� We record this traversal order in an array order: 

– the entry order(i) is the order of node i in the traversal. 



Search Algorithms



Search Algorithms

� LIST :

– represents the set of marked nodes that the algorithm has 

yet to examine in the sense that some admissible arcs might 

emanate from them. 

� When the algorithm terminates, it has marked all the 

nodes in G that are reachable from s via a directed nodes in G that are reachable from s via a directed 

path. 

� Search tree

– The predecessor indices define a tree consisting of marked 

nodes. 

– We call this tree a search tree. 



Search Algorithms

� (b) and (c), depict two search trees for the network shown in (a)



Search Algorithms

� It is easy to show that the search algorithm runs in 

O(m) time. 

� Each iteration of the while loop either finds an 

admissible arc or does not. 

– If the loop finds an admissible arc, the algorithm marks a 

new node and adds it to LIST, new node and adds it to LIST, 

– If the loop does not find an admissible arc it deletes a 

marked node from LIST. 

� Since the algorithm marks any node at most once, it 

executes the while loop at most 2n times. 



Search Algorithms

� Now consider the effort spent in identifying the 

admissible arcs. 

� For each node i, we scan the arcs in A(i) at most once. 

� Therefore, the search algorithm examines a total of 

� arcs, and thus terminates in O(m) time. 



Search Algorithms

� The algorithm, as described, does not specify the 

manner for examining the nodes or for adding the 

nodes to LIST. 

� Different rules give rise to different search techniques. 

� Two data structures have proven to be the most 

popular for maintaining LIST a queue and a stack and popular for maintaining LIST a queue and a stack and 

they give rise to two fundamental search strategies: 

– Breadth-first search 

– Depth-first search



Breadth-First Search 



Breadth-First Search 

� If we maintain the set LIST as a queue, we always 

select nodes from the front of LIST and add them to 

the rear. 

� In this case the search algorithm selects the marked 

nodes in a first-in, first-out order. 

If we define the distance of a node i as the minimum � If we define the distance of a node i as the minimum 

number of arcs in a directed path from node s to node 

i, this kind of search first marks nodes with distance 1, 

then those with distance 2, and so on. 

� Therefore, this version of search is called a breadth-

first search and the resulting search tree is a breadth-

first search tree. 



Breadth-First Search 

� The breadth-first search tree



Breadth-First Search 

� Property 

– In the breadth-first search tree, the tree path from the 

source node s to any node i is a shortest path 

– i.e., contains the fewest number of arcs among all paths 

joining these two nodes 

� <Breadth-First Search Animation>



Depth-First Search



Depth-First Search

� If we maintain the set LIST as a stack, we always 

select the nodes from the front of LIST and also add 

them to the front. 

� In this case the search algorithm selects the marked 

node in a last-in, first-out order.

This algorithm performs a deep probe, creating a path � This algorithm performs a deep probe, creating a path 

as long as possible, and backs up one node to initiate a 

new probe when it can mark no new node from the tip 

of the path. 

� We call this version of search a depth-first search 

� The depth-first traversal of a network is also called its 

preorder traversal. 



Depth-First Search

� A depth-first search tree



Depth-First Search

� Property

– (a) If node j is a descendant of node i, then order(j) > 

order(i).

– (b) All the descendants of any node are ordered 

consecutively in sequence. 

� <Depth-First Search Animation>



Reverse Search Algorithm



Reverse Search Algorithm

� The algorithm were described allows us to identify all 

the nodes in a network that are reachable from a given 

node s by directed paths. 

� Suppose that we wish to identify all the nodes in a 

network from which we can reach a given node t along 

directed paths. directed paths. 



Reverse Search Algorithm

� We can solve this problem by using the algorithm we 

have just described with three slight changes: 

– (1) we initialize LIST as LIST = {t}; 

– (2) while examining a node, we scan the incoming arcs of 

the node instead of its outgoing arcs; and 

– (3) we designate an arc (i, j) as admissible if i is unmarked – (3) we designate an arc (i, j) as admissible if i is unmarked 

and j is marked. 

� We subsequently refer to this algorithm as a reverse 

search algorithm. 



Reverse Search Algorithm

� Whereas the (forward) search algorithm gives us a 

directed out-tree rooted at node s, the reverse search 

algorithm gives us a directed in-tree rooted at node t. 

directed out-tree rooted        directed in-tree rooted 



Determining Strong Connectivity



Determining Strong Connectivity

� A network is strongly connected if for every pair of 

nodes i and j, the network contains a directed path 

from node i to node j. 

� This definition implies that a network is strongly 

connected if and only if for any arbitrary node s, every 

node in G is reachable from s along a directed path  node in G is reachable from s along a directed path  

� Conversely, node s is reachable from every other node 

in G along a directed path. 

� Clearly, we can determine the strong connectivity of a 

network by two applications of the search algorithm, 

once applying the (forward) search algorithm and then 

the reverse search algorithm. 



Topological Ordering



Topological Ordering

� Node labeling

– Let us label the nodes of a network G = (N, A) by distinct 

numbers from 1 through n and represent the labeling by an 

array order [i.e., order(i) gives the label of node i]. 

� Topological ordering

– We say that this labeling is a topological ordering of nodes – We say that this labeling is a topological ordering of nodes 

if every arc joins a lower-labeled node to a higher-labeled

node. 

– That is, for every arc (i, j) œ A, order(i) < order(j). 



Topological Ordering

� (a) a sample network, (b) the labeling shown is not a 

topological ordering because (5, 4) is an arc and order(5) > 

order(4). 



Topological Ordering

� (c) and (d) : the labelings shown are topological 

orderings. 

� A network might have several topological orderings.



Topological Ordering

� A network that contains a directed cycle has no 

topological ordering

– This network is cyclic because it contains a directed cycle 

and for any directed cycle W

– we can never satisfy the condition order(i) < order(j) for 

each (i, j) œ W. 



Topological Ordering

� we shall show next that a network that does not 

contain any negative cycle can be topologically 

ordered. 

� This observation shows that a network is acyclic if and 

only if it possesses a topological ordering of its nodes. 



Topological Ordering

� By using a search algorithm, we can either detect the 

presence of a directed cycle or produce a topological 

ordering of the nodes. 

� The algorithm is fairly easy to describe. 



Topological Ordering

� In the network G, 

– select any node of zero indegree. 

– Give it a label of 1, and then delete it and all the arcs 

emanating from it. 

– In the remaining subnetwork select any node of zero 

indegree, give it a label of 2, and then delete it and all arcs indegree, give it a label of 2, and then delete it and all arcs 

emanating from it. 

– Repeat this process until no node has a zero indegree. 

� At this point, 

– if the remaining subnetwork contains some nodes and arcs, 

the network G contains a directed cycle. 

– Otherwise, the network is acyclic and this labeling gives a 

topological ordering of nodes. 



Topological Ordering



Topological Ordering

� This algorithm 

– first computes the indegrees of all nodes and forms a set 

LIST consisting of all nodes with zero indegrees. 

– At every iteration we select a node i from LIST, for every 

arc (i, j) œ A(i) we reduce the indegree of node j by 1 unit, 

and if indegree of node j becomes zero, we add node j to and if indegree of node j becomes zero, we add node j to 

the set LIST. 

– Observe that deleting the arc (i, j) from the network is 

quivalent to decreasing the indegree of node j by 1 unit. 

� Since the algorithm examines each node and each arc 

of the network O(1) times, it runs in O(m) time. 

� <Topological Ordering Animation>



The End


