
In the name of GodIn the name of God

Network Flows

2. Search Algorithms

2.1 Algorithms2.1 Algorithms

Fall 2010
Instructor: Dr. Masoud Yaghini

Outline

� Introduction

� Breadth-First Search

� Depth-First Search

� Reverse Search Algorithm

� Determining Strong Connectivity� Determining Strong Connectivity

� Topological Ordering

Introduction

Search Algorithms

� Search algorithms

– fundamental graph techniques that attempt to find all the

nodes in a network

– Different variants of search algorithms lie at the heart of

many maximum flow and minimum cost flow algorithms.

Search Algorithms

� The applications of search algorithms:

– to find all nodes in a network that are reachable by directed

paths from a specific node,

– to find all the nodes in a network that can reach a specific

node t along directed paths,

– To identify all connected components of a network– To identify all connected components of a network

– to identify a directed cycle in a network

– to reorder the nodes 1, 2, ... , n so that for each arc (i, j) œ A,

i < j (topological ordering), if the network is acyclic

Search Algorithms

� We wish to find all the nodes in a network G = (N, A)

that are reachable along directed paths from a

distinguished node s, called the source.

� A search algorithm fans out from the source and

identifies an increasing number of nodes that are

reachable from the source. reachable from the source.

� Marked vs. unmarked node

– At every intermediate point in its execution, the search

algorithm designates all the nodes in the network as being

in one of the two states: marked or unmarked.

– The marked nodes are known to be reachable from the

source, and the status of unmarked nodes has yet to be

determined.

Search Algorithms

� If node i is marked, node j is unmarked, and the

network contains the arc (i, j), we can mark node j

� It is reachable from source via a directed path to node

i plus arc (i, j).

� Admissible vs. inadmissible arc

– Let us refer to arc (i, j) as admissible arc if node i is marked

and node j is unmarked,

– and refer to it as inadmissible arc otherwise.

� Initially, we mark only the source node.

� Subsequently, by examining admissible arcs, the

search algorithm will mark additional nodes.

Search Algorithms

� Predecessor node

– Whenever the procedure marks a new node j by examining

an admissible arc (i, j), we say that node i is a predecessor

of node j [i.e., pred(j) = i].

� The algorithm terminates when the network contains

no admissible arcs.no admissible arcs.

� The search algorithm traverses the marked nodes in a

certain order.

� We record this traversal order in an array order:

– the entry order(i) is the order of node i in the traversal.

Search Algorithms

Search Algorithms

� LIST :

– represents the set of marked nodes that the algorithm has

yet to examine in the sense that some admissible arcs might

emanate from them.

� When the algorithm terminates, it has marked all the

nodes in G that are reachable from s via a directed nodes in G that are reachable from s via a directed

path.

� Search tree

– The predecessor indices define a tree consisting of marked

nodes.

– We call this tree a search tree.

Search Algorithms

� (b) and (c), depict two search trees for the network shown in (a)

Search Algorithms

� It is easy to show that the search algorithm runs in

O(m) time.

� Each iteration of the while loop either finds an

admissible arc or does not.

– If the loop finds an admissible arc, the algorithm marks a

new node and adds it to LIST, new node and adds it to LIST,

– If the loop does not find an admissible arc it deletes a

marked node from LIST.

� Since the algorithm marks any node at most once, it

executes the while loop at most 2n times.

Search Algorithms

� Now consider the effort spent in identifying the

admissible arcs.

� For each node i, we scan the arcs in A(i) at most once.

� Therefore, the search algorithm examines a total of

� arcs, and thus terminates in O(m) time.

Search Algorithms

� The algorithm, as described, does not specify the

manner for examining the nodes or for adding the

nodes to LIST.

� Different rules give rise to different search techniques.

� Two data structures have proven to be the most

popular for maintaining LIST a queue and a stack and popular for maintaining LIST a queue and a stack and

they give rise to two fundamental search strategies:

– Breadth-first search

– Depth-first search

Breadth-First Search

Breadth-First Search

� If we maintain the set LIST as a queue, we always

select nodes from the front of LIST and add them to

the rear.

� In this case the search algorithm selects the marked

nodes in a first-in, first-out order.

If we define the distance of a node i as the minimum � If we define the distance of a node i as the minimum

number of arcs in a directed path from node s to node

i, this kind of search first marks nodes with distance 1,

then those with distance 2, and so on.

� Therefore, this version of search is called a breadth-

first search and the resulting search tree is a breadth-

first search tree.

Breadth-First Search

� The breadth-first search tree

Breadth-First Search

� Property

– In the breadth-first search tree, the tree path from the

source node s to any node i is a shortest path

– i.e., contains the fewest number of arcs among all paths

joining these two nodes

� <Breadth-First Search Animation>

Depth-First Search

Depth-First Search

� If we maintain the set LIST as a stack, we always

select the nodes from the front of LIST and also add

them to the front.

� In this case the search algorithm selects the marked

node in a last-in, first-out order.

This algorithm performs a deep probe, creating a path � This algorithm performs a deep probe, creating a path

as long as possible, and backs up one node to initiate a

new probe when it can mark no new node from the tip

of the path.

� We call this version of search a depth-first search

� The depth-first traversal of a network is also called its

preorder traversal.

Depth-First Search

� A depth-first search tree

Depth-First Search

� Property

– (a) If node j is a descendant of node i, then order(j) >

order(i).

– (b) All the descendants of any node are ordered

consecutively in sequence.

� <Depth-First Search Animation>

Reverse Search Algorithm

Reverse Search Algorithm

� The algorithm were described allows us to identify all

the nodes in a network that are reachable from a given

node s by directed paths.

� Suppose that we wish to identify all the nodes in a

network from which we can reach a given node t along

directed paths. directed paths.

Reverse Search Algorithm

� We can solve this problem by using the algorithm we

have just described with three slight changes:

– (1) we initialize LIST as LIST = {t};

– (2) while examining a node, we scan the incoming arcs of

the node instead of its outgoing arcs; and

– (3) we designate an arc (i, j) as admissible if i is unmarked – (3) we designate an arc (i, j) as admissible if i is unmarked

and j is marked.

� We subsequently refer to this algorithm as a reverse

search algorithm.

Reverse Search Algorithm

� Whereas the (forward) search algorithm gives us a

directed out-tree rooted at node s, the reverse search

algorithm gives us a directed in-tree rooted at node t.

directed out-tree rooted directed in-tree rooted

Determining Strong Connectivity

Determining Strong Connectivity

� A network is strongly connected if for every pair of

nodes i and j, the network contains a directed path

from node i to node j.

� This definition implies that a network is strongly

connected if and only if for any arbitrary node s, every

node in G is reachable from s along a directed path node in G is reachable from s along a directed path

� Conversely, node s is reachable from every other node

in G along a directed path.

� Clearly, we can determine the strong connectivity of a

network by two applications of the search algorithm,

once applying the (forward) search algorithm and then

the reverse search algorithm.

Topological Ordering

Topological Ordering

� Node labeling

– Let us label the nodes of a network G = (N, A) by distinct

numbers from 1 through n and represent the labeling by an

array order [i.e., order(i) gives the label of node i].

� Topological ordering

– We say that this labeling is a topological ordering of nodes – We say that this labeling is a topological ordering of nodes

if every arc joins a lower-labeled node to a higher-labeled

node.

– That is, for every arc (i, j) œ A, order(i) < order(j).

Topological Ordering

� (a) a sample network, (b) the labeling shown is not a

topological ordering because (5, 4) is an arc and order(5) >

order(4).

Topological Ordering

� (c) and (d) : the labelings shown are topological

orderings.

� A network might have several topological orderings.

Topological Ordering

� A network that contains a directed cycle has no

topological ordering

– This network is cyclic because it contains a directed cycle

and for any directed cycle W

– we can never satisfy the condition order(i) < order(j) for

each (i, j) œ W.

Topological Ordering

� we shall show next that a network that does not

contain any negative cycle can be topologically

ordered.

� This observation shows that a network is acyclic if and

only if it possesses a topological ordering of its nodes.

Topological Ordering

� By using a search algorithm, we can either detect the

presence of a directed cycle or produce a topological

ordering of the nodes.

� The algorithm is fairly easy to describe.

Topological Ordering

� In the network G,

– select any node of zero indegree.

– Give it a label of 1, and then delete it and all the arcs

emanating from it.

– In the remaining subnetwork select any node of zero

indegree, give it a label of 2, and then delete it and all arcs indegree, give it a label of 2, and then delete it and all arcs

emanating from it.

– Repeat this process until no node has a zero indegree.

� At this point,

– if the remaining subnetwork contains some nodes and arcs,

the network G contains a directed cycle.

– Otherwise, the network is acyclic and this labeling gives a

topological ordering of nodes.

Topological Ordering

Topological Ordering

� This algorithm

– first computes the indegrees of all nodes and forms a set

LIST consisting of all nodes with zero indegrees.

– At every iteration we select a node i from LIST, for every

arc (i, j) œ A(i) we reduce the indegree of node j by 1 unit,

and if indegree of node j becomes zero, we add node j to and if indegree of node j becomes zero, we add node j to

the set LIST.

– Observe that deleting the arc (i, j) from the network is

quivalent to decreasing the indegree of node j by 1 unit.

� Since the algorithm examines each node and each arc

of the network O(1) times, it runs in O(m) time.

� <Topological Ordering Animation>

The End

