In the name of God

Network Flows

3. Shortest Path Problems 3.1 Introduction

Fall 2010
Instructor: Dr. Masoud Yaghini

Shortest Path Problems

- Shortest path problems are attractive to both researchers and to practitioners for several reasons:
- (1) they arise frequently in practice
- (2) they are easy to solve efficiently
- (3) they provide both a benchmark and a point of departure for studying more complex network models
- (4) they arise frequently as subproblems when solving many combinatorial and network optimization problems

Notation and Assumptions

Notation and Assumptions

- Notation and Assumptions
- $G=(N, A)$: a directed network with an arc length (or arc $\operatorname{cost}) c_{i j}$ associated with each $\operatorname{arc}(i, j) \in A$.
$-s:$ the source.
- $A(i)$: represent the arc adjacency list of node I
$-C=\max \left\{c_{i j}:(i, j) \in A\right\}$.
- the length of a directed path : the sum of the lengths of arcs in the path.

Notation and Assumptions

- The shortest path problem
- is to determine for every non source node $i \in N$ a shortest length directed path from node s to node i.
- Alternatively,
- the problem as sending 1 unit of flow as cheaply as possible (with arc flow costs as $c_{i j}$) from node s to each of the nodes in $N-\{s\}$ in an uncapacitated network.

Notation and Assumptions

- The linear programming formulation of the shortest path problem:

$$
\text { Minimize } \sum_{(i, j \in A} c_{i j} x_{i j}
$$

subject to

$$
\begin{gathered}
\sum_{\{j:(i, j) \in A\}} x_{i j}-\sum_{\{j:(j, i) \in A\}} x_{j i}=\left\{\begin{array}{cl}
n-1 & \text { for } i=s \\
-1 & \text { for all } i \in N-\{s\}
\end{array}\right. \\
x_{i j} \geq 0 \quad \text { for all }(i, j) \in A
\end{gathered}
$$

Notation and Assumptions

- Assumption 1. All arc lengths are integers
- The integrality assumption imposed on arc lengths is necessary for some algorithms and unnecessary for others.
- We can always transform rational arc capacities to integer arc capacities by multiplying them by a suitably large number.
- Therefore, the integrality assumption is really not a restrictive assumption in practice.

Notation and Assumptions

- Assumption 2. The network contains a directed path from node s to every other node in the network.
- We can always satisfy this assumption by adding a fictitious arc (s, i) of suitably large cost for each node i that is not connected to node s by a directed path.

Notation and Assumptions

- Assumption 3. The network does not contain a negative cycle (i.e., a directed cycle of negative length).
- For any network containing a negative cycle W, the linear programming formulation has an unbounded solution because we can send an infinite amount of flow along W.
- The shortest path problem with a negative cycle is an NPcomplete problem, no polynomial-time algorithm for this problem is likely to exist

Notation and Assumptions

- Assumption 4.4. The network is directed.
- If the network were undirected and all arc lengths were nonnegative, we could transform this shortest path problem to one on a directed network.

Various Types of Shortest Path Problems

- Various Types of Shortest Path Problems
- the single-source shortest path problem
- Finding shortest paths from one node to all other nodes
- the all-pairs shortest path problem
- Finding shortest paths from every node to every other node

Algorithmic approaches for solving shortest path problems

Label-Setting and Label-Correcting Algorithms

- Algorithmic approaches for solving shortest path problems:
- label setting algorithms
- label correcting algorithms
- Characteristics:
- Both approaches are iterative.
- They assign tentative distance labels to nodes at each step
- The distance labels are estimates of (i.e., upper bounds on) the shortest path distances.
- The approaches vary in how they update the distance labels from step to step and how they converge toward the shortest path distances.

Label-Setting and Label-Correcting Algorithms

- Updating the distance labels
- Label-setting algorithms designate one label as permanent (optimal) at each iteration.
- Label-correcting algorithms consider all labels as temporary until the final step, when they all become permanent.

Label-Setting and Label-Correcting Algorithms

- The class of problems that they solve
- Label-setting algorithms are applicable only to
- (1) shortest path problems defined on acyclic networks with arbitrary arc lengths, and to
- (2) shortest path problems with nonnegative arc lengths.
- The label-correcting algorithms
- are more general and apply to all classes of problems, including those with negative arc lengths.

Label-Setting and Label-Correcting Algorithms

- Efficiency of the approaches
- The label-setting algorithms are much more efficient, that is, have much better worst-case complexity bounds;
- The label-correcting algorithms not only apply to more general classes of problems, but as we will see, they also offer more algorithmic flexibility.
- In fact, we can view the label-setting algorithms as special cases of the label-correcting algorithms.

Shortest Path Tree

- In the shortest path problem, we wish to determine a shortest path from the source node to all other $(n-1)$ nodes.
- How much storage would we need to store these paths?
- One naive answer would be an upper bound of $(n-1)^{2}$ since each path could contain at most ($n-1$) arcs.
- We need not use this much storage: $(n-1)$ storage locations are sufficient to represent all these paths.

Shortest Path Tree

- Shortest path tree
- We can always find a directed out-tree rooted from the source with the property that the unique path from the source to any node is a shortest path to that node.
- We refer to such a tree as a shortest path tree.
- The shortest path tree relies on the following property.
- If the path $\mathrm{s}=\boldsymbol{i}_{1}-i_{2}-\ldots-i_{h}=\mathrm{k}$ is a shortest path from node s to node k, then for every $q=2,3, \ldots, h-1$, the subpath $s=i_{1}-i_{2}-\ldots-i_{q}$ is a shortest path from the source node to node $\boldsymbol{i}_{\boldsymbol{q}}$.

The End

