
In the name of GodIn the name of God

Network Flows

3. Shortest Path Problems

3.2 Dijkstra's Algorithm 3.2 Dijkstra's Algorithm

Fall 2010
Instructor: Dr. Masoud Yaghini

Dijkstra's Algorithm

� Dijkstra's algorithm

– finds shortest paths from the source node s to all other

nodes in a network with nonnegative arc lengths.

– It is a label setting algorithm

� Dijkstra's algorithm maintains a distance label d(i)

with each node i, which is an upper bound on the with each node i, which is an upper bound on the

shortest path length to node i.

� At any intermediate step, the algorithm divides the

nodes into two groups:

– those which it designates as permanently labeled (or

permanent)

– those it designates as temporarily labeled (or temporary).

Dijkstra's Algorithm

� The distance label

– to any permanent node represents the shortest distance from

the source to that node.

– to any temporary node represents an upper bound on the

shortest path distance to that node.

� The basic idea of the algorithm is to fan out from node � The basic idea of the algorithm is to fan out from node

s and permanently label nodes in the order of their

distances from node s.

� Initially, we give node s a permanent label of zero, and

each other node j a temporary label equal to ∞.

Dijkstra's Algorithm

� At each iteration, the label of a node i is its shortest

distance from the source node along a path whose

internal nodes (i.e., nodes other than s or the node i

itself) are all permanently labeled.

� The algorithm selects a node i with the minimum

temporary label (breaking ties arbitrarily), makes it temporary label (breaking ties arbitrarily), makes it

permanent, and reaches out from that node-that is,

scans arcs in A(i) to update the distance labels of

adjacent nodes.

� The algorithm terminates when it has designated all

nodes as permanent.

Dijkstra's Algorithm

� Dijkstra's algorithm maintains a directed out-tree T

rooted at the source that spans the nodes with finite

distance labels.

� The algorithm maintains this tree using predecessor

indices [i.e., if (i, j) œ T, then pred(j) = i].

The algorithm maintains the invariant property that � The algorithm maintains the invariant property that

every tree arc (i, j) satisfies the condition

d(j) = d(i) + cij

� with respect to the current distance labels.

� At termination, when distance labels represent shortest

path distances, T is a shortest path tree.

Dijkstra's Algorithm

� Let

– d*(j) : denote the shortest path distance from node s to node

j.

– S : denotes the set of permanently labeled nodes.

� That is, d(j) = d*(j) for j ∈ S.

– S̅ : denotes the set of temporarily labeled nodes.

∈

∈

– S̅ : denotes the set of temporarily labeled nodes.

� That is, d(j) ≥ d*(j) for j ∈ T.

� Dijkstra’salgorithm will determine d*(j) for each j, in

order of increasing distance from the origin node 1.

Dijkstra's Algorithm

Dijkstra's Algorithm

Dijkstra's Algorithm

Dijkstra's Algorithm

Dial’s Algorithm

Dial’s Algorithm

� The bottleneck of Dijkstra's algorithm is node

selection.

– Scanning all temporarily labeled nodes at each iteration to

find the one with the minimum distance label, takes high

computation time

� Dial's algorithm � Dial's algorithm

– tries to maintain distances in some sorted fashion and

reduces the algorithm's computation time in practice

Dial’s Algorithm

� Dial's algorithm

– stores nodes with finite temporary labels in a sorted

fashion.

– It maintains nC + 1 sets, called buckets, numbered 0,1,2, . .

. , nC:

– Bucket k stores all nodes with temporary distance label – Bucket k stores all nodes with temporary distance label

equal to k.

– C : represents the largest arc length in the network, and

therefore nC is an upper bound on the distance label of any

finitely labeled node .

– We need not store nodes with infinite temporary distance

labels in any of the buckets-we can add them to a bucket

when they first receive a finite distance label.

Dial’s Algorithm

� We represent the content of bucket k by the set

content(k).

� In the node selection operation:

– we scan buckets numbered 0, 1, 2, . . . , until we identify the

first nonempty bucket.

– Suppose that bucket k is the first nonempty bucket. – Suppose that bucket k is the first nonempty bucket.

– Then each node in content(k) has the minimum distance

label.

– One by one, we delete these nodes from the bucket,

designate them as permanently labeled, and scan their arc

lists to update the distance labels of adjacent nodes.

– Whenever we update the distance label of a node i from d1

to d2; we move node i from content(d1) to content(d2).

Dial’s Algorithm

� In the next node selection operation, we resume the

scanning of buckets numbered k + 1, k + 2, ... to select

the next nonempty bucket.

� Property 4.5 implies that the buckets numbered 0, 1, 2,

. . . , k will always be empty in the subsequent

iterations and the algorithm need not examine them iterations and the algorithm need not examine them

again.

The End

