In the name of God

Network Flows

3. Shortest Path Problems
3.5 Label-Correcting Algorithm

Fall 2010

Instructor: Dr. Masoud Yaghini

Optimality Conditions

Optimality Conditions

e Shortest Path Optimality Conditions

— let d(j) denote the length of some directed path from the
source node to node j, for every node j € N,

— the numbers d(j) represent shortest path distances if and
only 1f they satisfy the following shortest path optimality
conditions:

d(j) = d(i) + ¢; forall (i, j) € A.

Optimality Conditions

d(j) = d(i) + c; forall (i, j) € A.

— These 1nequalities state that for every arc (i, j) in the
network, the length of the shortest path to node j 1s no
greater than the length of the shortest path to node i plus the
length of the arc (i, j).

— For, 1f not, some arc (i, j) € A must satisfy the condition
d@) > d(@) + ¢

— 1n this case, we could improve the length of the shortest
path to node j by passing through node i, thereby
contradicting the optimality of distance labels d(j).

Optimality Conditions

elets=1i-1i,-..-I,=]beany directed path P from
the source to node ;.

d(j) = d(i) =d(ix-1) + ci_ s,

d(ik-—l) = d(ik—2) + C:'k-szmu

d(iz) =d(i1) + cun = Cip,
e Adding these inequalities, we find that

d(]) = d(lk) = Cir—rixr T Cix—niz—q1 T+ Citezixg—p + ... + Citp = 2 Cij.
(i,)yep

Optimality Conditions

e Thus d(j) is a lower bound on the length of any
directed path from the source to node ;.

e Since d(j) 1s the length of some directed path from the
source to node j, it also is an upper bound on the
shortest path length.

e Therefore, d(j) 1s the shortest path length, and we have
established the following result.

Generic Label-Correcting Algorithms

Generic Label-Correcting Algorithms

® The generic label-correcting algorithm
— negative costs permitted
— no negative cycle

— maintains a set of distance labels d(.) at every stage.

e The label d(j)

— either oo, indicating that we have yet to discover a directed
path from the source to node j,

— or it 1s the length of some directed path from the source to
node j.

e The predecessor index

— pred(j), which records the node prior to node j in the
current directed path of length d(j).

Generic Label-Correcting Algorithms

e At termination, the predecessor indices allow us to
trace the shortest path from the source node back to
node j.

Generic Label-Correcting Algorithms

algorithm /abel-correcting,;
begin
d(s) : = 0 and pred(s) : = 0;
d(j} : = o foreach j€ N — {s};
while some arc (J, j) satisfies d(j) > d(i} + c;do
begin
dij): = dli) + cy;
pred(j) : = i
end;
end;

e <Animation>

Modified Label-Correcting Algorithms

Modified Label-Correcting Algorithms

e The generic label-correcting algorithm

— does not specify any method for selecting an arc violating
the optimality condition.

— One obvious approach is to scan the arc list sequentially
and 1dentify any arc violating this condition.

— This procedure is very time consuming because it requires
O(m) time per iteration.

Modified Label-Correcting Algorithms

e Modified Label-Correcting Algorithms

— an improved approach that reduces the workload to an
average of O(m/n) time per iteration.
e Suppose that we maintain a list, LIST, of all arcs that
might violate their optimality conditions.

e If LIST is empty, clearly we have an optimal solution.
— Otherwise, we examine this list to select an arc, say (i, j),
violating its optimality condition.

e We remove arc (i, j) from LIST, and if this arc
violates its optimality condition we use it to update the
distance label of node ;.

Modified Label-Correcting Algorithms

e Any decrease in the distance label of node j decreases
the reduced lengths of all arcs emanating from node j
and some of these arcs might violate the optimality
condition.

e Also notice that decreasing d(j) maintains the
optimality condition for all incoming arcs at node ;.

e Therefore, if d(j) decreases, we must add arcs 1n A(j)
to the set LIST.

e Next, observe that whenever we add arcs to LIST, we
add all arcs emanating from a single node (whose
distance label decreases).

Modified Label-Correcting Algorithms

algorithm modified label-correcting;
begin
d(s) : = 0 and pred(s) : = 0;
d(j) : = ~for each node j € N — {s};
LIST : = {s};

while LIST #f8do
begin

remove an element i/ from LIST;
for each arc (i, j) € A() do
if d(j) > d(i) + ¢;then
begin
d(j) : = d(i) + cy;
pred(j) : = i;
if j € LIST then add node j to LIST:
end;
end;
end;

Modified Label-Correcting Algorithms

e This suggests that instead of maintaining a list of all
arcs that might violate their optimality conditions, we
may maintain a list of nodes with the property that if
an arc (i, j) violates the optimality condition, LIST
must contain node i.

e Maintaining a node list rather than the arc list requires
less work and leads to faster algorithms in practice.

e This 1s the essential idea behind the modified label-
correcting algorithm

e <Animation>

The End

