In the name of God

Network Flows

5. Minimum Cost Flow Problem
 5.2. Cycle Canceling Algorithm An Example

Fall 2010
Instructor: Dr. Masoud Yaghini

A minimum cost flow problem

The Original Capacities and Feasible Flow

The feasible flow can be found by solving a max flow.

Capacities on the Residual Network

Costs on the Residual Network

Find a negative cost cycle, if
 there is one.

Send flow around the cycle

Send flow around the negative cost cycle

The capacity of this cycle is 15 .

Form the next residual network.

Capacities on the residual network

Costs on the residual network

Find a negative cost cycle, if there is one.

Send flow around the cycle

Send flow around the negative cost cycle

The capacity of this cycle is 10 .

Form the next residual network.

Capacities on the residual network

Costs in the residual network

Find a negative cost cycle, if there is one.

Send Flow Around the Cycle

Send flow around the negative cost cycle

The capacity of this cycle is 5 .

Form the next residual network.

Capacities on the residual network

Costs in the residual network

Find a negative cost cycle, if there is one.

Send Flow Around the Cycle

Send flow around the negative cost cycle

Form the next residual network.

Capacities on the residual network

Costs in the residual network

Find a negative cost cycle, if there is one.

There is no negative cost cycle. But what is the proof?

Compute shortest distances in the residual network

Next let $\pi(\mathrm{j})=-\mathrm{d}(\mathrm{j})$

And compute $\mathbf{c}^{\boldsymbol{\pi}}$

Reduced costs in the residual network

The reduced costs in $G\left(x^{*}\right)$ for the optimal flow \mathbf{x}^{*} are all nonnegative.

The End

