In the name of God

Network Flows

5. Minimum Cost Flow Problem 5.2. Cycle Canceling Algorithm – An Example

Fall 2010

Instructor: Dr. Masoud Yaghini

A minimum cost flow problem

The Original Capacities and Feasible Flow

Costs on the Residual Network

Send flow around the cycle

Costs on the residual network

Send flow around the cycle

Form the next residual network.

Costs in the residual network

Send Flow Around the Cycle

Costs in the residual network

Send Flow Around the Cycle

Form the next residual network.

Costs in the residual network

There is no negative cost cycle. But what is the proof?

Compute shortest distances in the residual network

Next let $\pi(j) = -d(j)$

And compute c^{π}

Reduced costs in the residual network

The End