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Introduction

� Lagrangian relaxation has become one of the very 

few solution methods in optimization that cuts across 

the domains of linear and integer programming, 

combinatorial optimization, and nonlinear 

programming. 

� The basic idea of Lagrangian relaxation is described � The basic idea of Lagrangian relaxation is described 

via an example.
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� Constrained Shortest Paths

– Consider the following network 
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� The network has two attributes associated with each 

arc (i, j): a cost cij and a traversal time tij. 

� Suppose that we wish to find the shortest path from the 

source node 1 to the sink node 6, but we wish to 

restrict our choice of paths to those that require no 

more than T = 10 time units to traverse. more than T = 10 time units to traverse. 

� The constrained shortest path problem is an NP-hard 

problem
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� The constrained shortest path problem from node 1 to 

node n can be stated as the following integer 

programming problem:
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� The problem is not a shortest path problem because of 

the timing restriction. 

� Rather, it is a shortest path problem with an additional 

side constraint. 

� Instead of solving this problem directly, suppose that 

we adopt an indirect approach by combining time and we adopt an indirect approach by combining time and 

cost into a single modified cost; that is, we place a 

dollar equivalent on time. 

� So instead of setting a limit on the total time we can 

take on the chosen path, we set a "toll charge" on each 

arc proportional to the time that it takes to traverse that 

arc. 
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� For example, 

– we might charge $2 for each hour that it takes to traverse 

any arc. 

� Note that 

– if the toll charge is zero, we are ignoring time altogether 

and the problem becomes a usual shortest path problem and the problem becomes a usual shortest path problem 

with respect to the given costs. 

– if the toll charge is very large, these charges become the 

dominant cost and we will be seeking the quickest path 

from the source to the sink. 
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� Can we find a toll charge somewhere in between these 

values so that by solving the shortest path problem 

with the combined costs (the toll charges and the 

original costs), we solve the constrained shortest path 

problem as a single shortest path problem?
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� Let P, with cost cp and traversal time tP be any feasible 

path to the constrained shortest path problem

� Let l(µ) denote the optimal length of the shortest path � Let l(µ) denote the optimal length of the shortest path 

with the modified costs when we impose a toll of µ

units. 

� Since the path P is feasible for the constrained shortest 

path problem, the time tP required to traverse this path 

is at most T = 10 units. 
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� the modified costs is 

cij + µtij, 

� the modified cost of the path P is 

cp + µtP

� Because the path P is feasible, so � Because the path P is feasible, so 

µtP≤ µT

� Therefore, if we subtract µT from the modified cost 

cP + µtP of this path, we obtain a lower bound:

cP + µtP – µT

= cP + µ(tP – T) ≤ cP
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� Bounding Principle. 

– For any µ ≥ 0, the length l(µ) of the modified shortest path 

with costs cij + µtij – µT is a lower bound on the length of 

the constrained shortest path. 



Introduction

� bold lines denote the shortest path with Lagrange 

multiplier µ = 0
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� modified cost c + µt with Lagrange multiplier µ = 2 

(bold lines denote the shortest path). 
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� The example, for µ = 2, the cost of the modified 

shortest path problem is 35 units and so 35 – 2(T) = 35 

– 2(10) = 15 is a lower bound on the length of the 

optimal constrained shortest path. 

� But since the path 1-3-2-5-6 is a feasible solution to 

the constrained shortest path problem and its cost the constrained shortest path problem and its cost 

equals the lower bound of 15 units, we can be assured 

that it is an optimal constrained shortest path.
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� Rather than solving the difficult optimization problem 

directly, we combined the complicating timing 

constraint with the original objective function, via the 

toll µ, so that we could then solve a resulting 

embedded shortest path problem. 

� This general solution approach has become known as � This general solution approach has become known as 

Lagrangian relaxation.
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� The lower bounding mechanism of Lagrangian 

relaxation frequently provides valuable information 

that we can exploit algorithmically. 

� In many instances in the context of integer 

programming, the bounds provided by Lagrangian 

relaxation methods are much better than those relaxation methods are much better than those 

generated by solving the LP relaxation of the 

problems, and as a consequence, Lagrangian 

relaxation is often an attractive alternative to linear 

programming as a bounding mechanism in branch-

and-bound methods for solving integer programs.
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Lagrangian Relaxation Technique

� Consider the following generic optimization model 

formulated in terms of a vector x of decision variables:

� Model (P) 



Lagrangian Relaxation Technique

� Lagrangian relaxation procedure 

– uses the idea of relaxing the explicit linear constraints by 

bringing them into the objective function with associated 

Lagrange multipliers µ. 
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� Lagrangian relaxation subproblem

– or Lagrangian subproblem of the original problem

– is a problem that its linear constraints are relaxed by 

bringing them into the objective function with associated 

Lagrange multipliers µ

– Lagrangian function



Lagrangian Relaxation Technique

� Note that since in forming the Lagrangian relaxation, 

we have eliminated the constraints Ax = b from the 

problem formulation, the solution of the Lagrangian 

subproblem need not be feasible for the original 

problem (P). 

� Can we obtain any useful information about the � Can we obtain any useful information about the 

original problem even when the solution to the 

Lagrangian subproblem is not feasible in the original 

problem (P)? 
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� Lagrangian Bounding Principle

– For any vector µ of the Lagrangian multipliers, the value 

L(µ) of the Lagrangian function is a lower bound on the 

optimal objective function value z* of the original 

optimization problem (P).
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� Proof. 

– Since Ax = b for every feasible solution to (P), for any 

vector µ of Lagrangian multipliers, 

z* = min{cx : Ax = b, x œ X} 

= min{cx + µ(Ax - b) : Ax = b, x œ X}. 

– Since removing the constraints Ax = b from the second 

formulation cannot lead to an increase in the value of the 

objective function 
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� Therefore, for any value of the Lagrangian multiplier 

µ, L(µ) is a lower bound on the optimal objective 

function value of the original problem. 
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� Lagrangian multiplier problem

– To obtain the sharpest possible lower bound, we would 

need to solve the following optimization problem:

� Property (Weak Duality). 

– The optimal objective function value L* of the Lagrangian 

multiplier problem is always a lower bound on the optimal 

objective function value of the problem (P) 

L* ≤ z*
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� The valid bounds for comparing objective function 

values of 

– L(µ) : the Lagrange multiplier problem for any choices of 

the Lagrange multipliers µ

– L*(µ) : optimal objective function value of the Lagrangian 

multiplier problemmultiplier problem

– z* optimal objective value of model (P) 

– cx: any feasible solution x of (P)
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� Property (a) (Optimality Test)

– Suppose that µ is a vector of Lagrangian multipliers and x is 

a feasible solution to the optimization problem (P) 

satisfying the condition L(µ) = cx. 

– Then L(µ) is an optimal solution of the Lagrangian 

multiplier problem [i.e., L* = L(µ)] and x is an optimal multiplier problem [i.e., L* = L(µ)] and x is an optimal 

solution to the optimization problem (P). 
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� Property (b) (Optimality Test)

– If for some choice of the Lagrangian multiplier vector µ, 

the solution x* of the Lagrangian relaxation is feasible in 

the optimization problem (P), then x* is an optimal solution 

to the optimization problem (P) and µ is an optimal solution 

to the Lagrangian multiplier problem.

L(µ) = cx* + µ(Ax* - b) and Ax* = b, 

therefore, 

L(µ) = cx* 
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� One advantage of the Lagrangian relaxation 

approach

– the method can give us a certificate [in the form of the 

equality L(µ) = cx for some Lagrange multiplier µ] for 

guaranteeing that a given feasible solution x to the 

optimization problem (P) is an optimal solution. optimization problem (P) is an optimal solution. 

– Even if L(µ) < cx, having the lower bound permits us to 

state a bound on how far a given solution is from optimality

– If [cx - L(µ)]/L(µ) ≤ 0.05, for example, we know that the 

objective function value of the feasible solution x is no 

more than 5% from optimality. 
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� Lagrangian Relaxation and Inequality Constraints 

– The Lagrangian multiplier problem when we encounter 

models, that are formulated in inequality form Ax ≤ b 

becomes

– the Lagrangian multipliers now are restricted to be 

nonnegative. 

– By introducing "slack variables" to formulate the inequality 

problem as an equivalent equality problem
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� Property. 

– Suppose that we apply Lagrangian relaxation to the 

optimization problem (P≤ ) defined as minimize {cx: Ax≤b

and x œ X} by relaxing the inequalities Ax ≤ b. 

– Suppose, further, that for some choice of the Lagrangian 

multiplier vector µ, the solution x* of the Lagrangian multiplier vector µ, the solution x* of the Lagrangian 

relaxation (1) is feasible in the optimization problem (P ≤), 

and (2) satisfies the complementary slackness condition 

µ(Ax* - b) = 0. 

– Then x* is an optimal solution to the optimization problem 

(P ≤). 



The End


