In the name of God

Network Flows

6. Lagrangian Relaxation 6.2 Solving the Lagrangian Multiplier Problem

Fall 2010

Instructor: Dr. Masoud Yaghini

Outline

- Introduction
- Subgradient Optimisation Technique
- Subgradient Optimization and Inequality Constraints

Introduction

Solving the Lagrangian Multiplier Problem

- Consider the constrained shortest path problem
- Suppose that now we have a time limitation of $\mathrm{T}=14$ instead of $\mathrm{T}=10$.
- When we relax the time constraint, the Lagrangian multiplier function $L(\mu)$ becomes:

$$
L(\mu)=\min \left\{c_{P}+\mu\left(t_{P}-T\right): P \in \mathscr{P}\right\}
$$

- where, \mathcal{P} is the collection of all directed paths from the source node 1 to the sink node n.

Solving the Lagrangian Multiplier Problem

- For convenience, we refer to the quantity $c_{p}+\mu\left(t_{P}-T\right)$ as the composite cost of the path P.
- For a specific value of the Lagrangian multiplier μ, we can solve $L(\mu)$ by enumerating all the directed paths in \mathcal{P} and choosing the path with the smallest composite cost.
- We can solve the Lagrangian multiplier problem by determining $L(\mu)$ for all nonnegative values of the Lagrangian multiplier μ and choosing the value that achieves $\max _{\mu \geq 0} L(\mu)$.

Solving the Lagrangian Multiplier Problem

- Path cost and time data with $T=14$

Path \boldsymbol{P}	Path cost $\boldsymbol{c}_{\boldsymbol{P}}$	Path time $\boldsymbol{t}_{\boldsymbol{P}}$	Composite cost $\boldsymbol{c}_{\boldsymbol{P}}+\boldsymbol{\mu}\left(\boldsymbol{t}_{\boldsymbol{P}}-\boldsymbol{T}\right)$
$1-2-4-6$	3	18	$3+4 \mu$
$1-2-5-6$	5	15	$5+\mu$
$1-2-4-5-6$	14	14	14
$1-3-2-4-6$	13	13	$13-\mu$
$1-3-2-5-6$	24	9	$15-4 \mu$
$1-3-2-4-5-6$	16	17	$16+3 \mu$
$1-3-4-6$	27	13	$27-\mu$
$1-3-4-5-6$	24	8	$24-6 \mu$
$1-3-5-6$			

Solving the Lagrangian Multiplier Problem

- The composite $\operatorname{cost} c_{P}+\mu\left(t_{P}-T\right)$ for any path P is a linear function of μ with an intercept of c_{P} and a slope of $\left(t_{P}-T\right)$

Solving the Lagrangian Multiplier Problem

- Lagrangian function, $T=14$

Solving the Lagrangian Multiplier Problem

- To find the optimal multiplier value μ^{*} of the Lagrangian multiplier problem, we need to find the highest point of the Lagrangian multiplier function $L(\mu)$.
- Suppose that we consider the polyhedron defined by those points that lie on or below the function $L(\mu)$.
- These are the shaded points in the Figure.
- Then geometrically, we are finding the highest point in a polyhedron defined by the function $L(\mu)$, which is a linear program.

Solving the Lagrangian Multiplier Problem

- Consider the generic optimization model (P), defined

$$
\min \{c x: \mathscr{A} x=b, x \in X\}
$$

- and suppose that the set X is finite.

$$
X=\left\{x^{1}, x^{2}, \ldots, x^{K}\right\}
$$

- By relaxing the constraints $A x=b$, we obtain the Lagrangian multiplier function:

$$
L(\mu)=\min \{c x+\mu(\mathscr{A} x-b): x \in X\} .
$$

- By definition:

$$
L(\mu) \leq c x^{k}+\mu\left(\mathscr{A} x^{k}-b\right) \quad \text { for all } k=1,2, \ldots, K .
$$

Solving the Lagrangian Multiplier Problem

- In the space of composite costs and Lagrange multipliers μ, each function $c x^{\mathrm{k}}+\mu\left(A x^{\mathrm{k}}-\mathrm{b}\right)$ is a multidimensional "line" called a hyperplane (if μ is two-dimensional, it is a plane).
- The Lagrangian multiplier function $L(\mu)$ is the lower envelope of the hyperplanes $c x^{\mathrm{k}}+\mu\left(A x^{\mathrm{k}}-\mathrm{b}\right)$ for $k=1$, $2, \ldots, K$.
- In the Lagrangian multiplier problem, we wish to determine the highest point on this envelope

Solving the Lagrangian Multiplier Problem

- We can find this the highest point by solving the optimization problem:

Maximize w

subject to

$$
\begin{gathered}
w \leq c x^{k}+\mu\left(\mathscr{A} x^{k}-b\right) \quad \text { for all } k=1,2, \ldots, K \\
\mu \text { unrestricted }
\end{gathered}
$$

Solving the Lagrangian Multiplier Problem

- Theorem.
- The Lagrangian multiplier problem $L^{*}=\max _{\mu} L(\mu)$ with

$$
L(\mu)=\min \left\{c x^{k}+\mu(\mathscr{A} x-b): x \in X\right\}
$$

- is equivalent to the linear programming problem

$$
\begin{gathered}
L^{*}=\max \left\{w: w \leq c x^{k}+\mu\left(A x^{k}-b\right)\right. \\
\text { for } k=1,2, \ldots, K\} .
\end{gathered}
$$

Subgradient Optimisation Technique

Subgradient Optimisation Technique

- In solving optimization problems with the nonlinear objective function $\boldsymbol{f}(\boldsymbol{x})$ of an n-dimensional vector \boldsymbol{x}, researchers and practitioners often use gradient methods.

Subgradient Optimisation Technique

- Suppose that in solving the Lagrangian multiplier problem, we are at a point where the Lagrangian function has a unique solution $\overline{\boldsymbol{x}}$.

$$
L(\mu)=\min \{c x+\mu(\mathscr{A} x-b): x \in X\}
$$

- Since

$$
L(\mu)=c \bar{x}+\mu(\mathscr{A} \bar{x}-b)
$$

- The solution $\overline{\boldsymbol{x}}$ remains optimal for small changes in the value of $\boldsymbol{\mu}$, the gradient at this point is

$$
A \bar{x}-b
$$

Subgradient Optimisation Technique

- A gradient method would change the value of $\boldsymbol{\mu}$ as follows: $\quad \mu \leftarrow \mu+\theta(\mathscr{A} \bar{x}-b)$.
- $\boldsymbol{\theta}$: is a step size (a scalar) that specifies how far we move in the gradient direction.
- If $(\mathcal{A} \boldsymbol{x}-\boldsymbol{b})_{i}=\mathbf{0}$, the solution \boldsymbol{x} uses up exactly the required units of the i th resource, and we hold the Lagrange multiplier (the toll) $\boldsymbol{\mu}_{i}$ of that resource at its current value;
- If $(\mathcal{A} \boldsymbol{x}-\boldsymbol{b})_{i}<\mathbf{0}$, the solution \boldsymbol{x} uses up less than the available units of the i th resource and we decrease the Lagrange multiplier μ_{i} on that resource;
- If $(\mathcal{A} \boldsymbol{x}-\boldsymbol{b})_{i}>\mathbf{0}$, the solution \boldsymbol{x} uses up more than the available units of the i th resource and we increase the Lagrange multiplier μ_{i} on that resource.

Subgradient Optimisation Technique

- To solve the Lagrangian multiplier problem, let $\boldsymbol{\mu}^{0}$ be any initial choice of the Lagrange multiplier;
- we determine the subsequent values $\boldsymbol{\mu}^{k}$ for $\boldsymbol{k}=1,2, \ldots$, of the Lagrange multipliers as follows:

$$
\mu^{k+1}=\mu^{k}+\theta_{k}\left(\mathscr{A} x^{k}-b\right)
$$

- where \boldsymbol{x}^{k} : is any solution to the Lagrangian subproblem when $\boldsymbol{\mu}=\boldsymbol{\mu}^{\mathbf{k}}$ and $\boldsymbol{\theta}_{\boldsymbol{k}}$ is the step length at the \boldsymbol{k} th iteration.

Subgradient Optimisation Technique

- To ensure that this method solves the Lagrangian multiplier problem, we need to exercise some care in the choice of the step sizes $\boldsymbol{\theta}$.
- If we choose them too small, the algorithm would become stuck at the current point and not converge;
- If we choose the step sizes too large, the iterates $\boldsymbol{\mu}^{k}$ might overshoot the optimal solution and perhaps even oscillate between two nonoptimal solutions.

Subgradient Optimisation Technique

- Newton's method
- It is an important variant of the subgradient optimization procedure
- Suppose that

$$
L\left(\mu^{k}\right)=c x^{k}+\mu^{k}\left(\mathscr{A} x^{k}-b\right)
$$

- that is, $\boldsymbol{x}^{\boldsymbol{k}}$ solves the Lagrangian subproblem when $\boldsymbol{\mu}=\boldsymbol{\mu}^{\mathbf{k}}$
- We assume that \boldsymbol{x}^{k} continues to solve the Lagrangian subproblem as we vary $\boldsymbol{\mu}$; or, stated in another way, we make a linear approximation

$$
r(\mu)=c x^{k}+\mu\left(\mathscr{A} x^{k}-b\right) \text { to } L(\mu)
$$

Subgradient Optimisation Technique

- Newton's method (cont.)
- Suppose that we know the optimal value L^{*} of the Lagrangian multiplier problem (which we do not).
- Then we might move in the subgradient direction until the value of the linear approximation exactly equals L^{*}.

Subgradient Optimisation Technique

- The constrained shortest path example, $\mathbf{T}=14$

Subgradient Optimisation Technique

- The constrained shortest path example
- The figure shows an example of Newton's method when applied to the constrained shortest path example, starting with $\boldsymbol{\mu}^{k}=\mathbf{0}$.
- At this point, the path $\boldsymbol{P}=\mathbf{1 - 2 - 4}-6$ solves the Lagrangian subproblem and $\mathcal{A x} \boldsymbol{x} \mathbf{b}$ equals $\boldsymbol{t}_{\boldsymbol{p}}-\mathbf{T}=\mathbf{1 8 - 1 4 = 4}$.
- Since $\boldsymbol{L}^{*}=7$ and the path \boldsymbol{P} has a cost $\boldsymbol{c}_{\boldsymbol{p}}=\mathbf{3}$, in accordance with this linear approximation, or Newton's method, we would approximate

$$
L(\mu) \text { by } r(\mu)=3+4 \mu, \text { set } 3+4 \mu=7
$$

- and define the new value of $\boldsymbol{\mu}$ as

$$
\mu^{k+1}=(7-3) / 4=1
$$

Subgradient Optimisation Technique

- In general, we set the step length $\boldsymbol{\theta}_{\boldsymbol{k}}$ so that

$$
r\left(\mu^{k+1}\right)=c x^{k}+\mu^{k+1}\left(\mathscr{A} x^{k}-b\right)=L^{*}
$$

- since,

$$
\mu^{k+1}=\mu^{k}+\theta_{k}\left(\mathscr{A} x^{k}-b\right)
$$

- then,

$$
r\left(\mu^{k+1}\right)=c x^{k}+\left[\mu^{k}+\theta_{k}\left(\mathscr{A} x^{k}-b\right)\right]\left(\mathscr{A} x^{k}-b\right)=L^{*}
$$

Subgradient Optimisation Technique

- recalling that

$$
L\left(\mu^{k}\right)=c x^{k}+\mu\left(\mathscr{A} x^{k}-b\right)
$$

- and letting the Euclidean norm of the vector y :

$$
\|y\|=\left(\sum_{j} y_{j}^{2}\right)^{1 / 2}
$$

- we can solve for the step length and find that

$$
\theta_{k}=\frac{L^{*}-L\left(\mu^{k}\right)}{\left\|\mathscr{A} x^{k}-b\right\|^{2}}
$$

Subgradient Optimisation Technique

- Since we do not know the optimal objective function value L^{*} of the Lagrangian multiplier problem,
- practitioners of Lagrangian relaxation often use the following popular heuristic for selecting the step length:

$$
\theta_{k}=\frac{\lambda_{k}\left[\mathrm{UB}-L\left(\mu^{k}\right)\right]}{\left\|\mathscr{A} x^{k}-b\right\|^{2}} .
$$

- UB : is an upper bound on the optimal objective function value z^{*} of the problem (\mathbf{P}), and so an upper bound on \boldsymbol{L}^{*} as well
- λ_{k} : is a scalar chosen (strictly) between 0 and 2.

Subgradient Optimisation Technique

- The heuristic procedure:
- Initially, the upper bound is the objective function value of any known feasible solution to the problem (P).
- As the algorithm proceeds, if it generates a better (i.e., lower cost) feasible solution, it uses the objective function value of this solution in place of the upper bound UB.
- Usually, practitioners choose the scalars $\boldsymbol{\lambda}_{\boldsymbol{k}}$ by starting with $\boldsymbol{\lambda}_{k}=\mathbf{2}$ and then reducing λ_{k} whenever the best Lagrangian objective function value found so far has failed to increase in a specified number of iterations.
- Since this version of the algorithm has no convenient stopping criteria, practitioners usually terminate it after it has performed a specified number of iterations.

Subgradient Optimisation Technique

- we might note that the subgradient optimization procedure is not the only way to solve the Lagrangian multiplier problem:
- practitioners have used a number of other heuristics, including methods known as multiplier ascent methods.

Subgradient Optimization and Inequality Constraints

Subgradient Optimization and Inequality Constraints

- If we apply Lagrangian relaxation to a problem with constraints $\mathcal{A} \boldsymbol{x}-\boldsymbol{b}$ stated in inequality form instead of the equality constraints, the Lagrange multipliers $\boldsymbol{\mu}$ are constrained to be nonnegative.
- The update formula

$$
\mu^{k+1}=\mu^{k}+\theta_{k}\left(\mathscr{A} x^{k}-b\right)
$$

- might cause one or more of the components $\boldsymbol{\mu}_{i}$ of $\boldsymbol{\mu}$ to become negative.

Subgradient Optimization and Inequality Constraints

- To avoid this possibility, we modify the update formula as follows:

$$
\mu^{k+1}=\left[\mu^{k}+\theta_{k}\left(\mathscr{A} x^{k}-b\right)\right]^{+}
$$

- where, the notation $[\mathbf{y}]^{+}$denotes the "positive part" of the vector y ; that is, the \boldsymbol{i} th component of $[\mathbf{y}]^{+}$equals the maximum of $\mathbf{0}$ and $\boldsymbol{y}_{\boldsymbol{i}}$.
- Stated in another way, if the update formula

$$
\mu^{k+1}=\mu^{k}+\theta_{k}\left(\mathscr{A} x^{k}-b\right)
$$

- would cause the i th component of μ_{i} to be negative, then we simply set the value of this component to be zero.

Subgradient Optimization and Inequality Constraints

- We then implement all the other steps of the subgradient procedure exactly the same as for problems with equality constraints.
- i.e., the choice of the step size 9 at each step and
- the solution of the Lagrangian subproblems
- For problems with both equality and inequality constraints, we use a mixture of the equality and inequality versions of the algorithm

Subgradient Optimization and Inequality Constraints

- The constrained shortest path example:
- We start to solve our constrained shortest path problem at $\boldsymbol{\mu}^{\mathbf{0}}=\mathbf{0}$ with $\lambda^{\mathbf{0}}=\mathbf{0 . 8}$ and with $\mathbf{U B}=\mathbf{2 4}$, the cost corresponding to the shortest path 1-3-5-6.
- Suppose that we choose to reduce the scalar λ_{k} by a factor of $\mathbf{2}$ whenever three successive iterations at a given value of λ_{k} have not improved on the best Lagrangian objective function value $L(\mu)$.
- The solution $\boldsymbol{x}^{\mathbf{0}}$ to the Lagrangian subproblem with $\boldsymbol{\mu}=\mathbf{0}$ corresponds to the path $\boldsymbol{P}=\mathbf{1 - 2 - 4}-6$, the Lagrangian subproblem has an objective function value of $\boldsymbol{L}(\mathbf{0})=\mathbf{3}$, and the subgradient $\mathcal{A} \boldsymbol{x}^{0}-\mathbf{b}$ at $\boldsymbol{\mu}=\mathbf{0}$ is $\left(\boldsymbol{t}_{p}-\mathbf{1 4}\right)=\mathbf{1 8} \mathbf{- 1 4}=\mathbf{4}$.

Subgradient Optimization and Inequality Constraints

- bold lines denote the shortest path with Lagrange multiplier $\mu=0$

Subgradient Optimization and Inequality Constraints

- So at the first step, we choose

$$
\begin{aligned}
\theta_{k} & =\frac{\lambda_{k}\left[\mathrm{UB}-L\left(\mu^{k}\right)\right]}{\left\|\mathscr{A} x^{k}-b\right\|^{2}} . \\
\theta_{0} & =0.8(24-3) / 16=1.05, \\
\mu^{k+1} & =\left[\mu^{k}+\theta_{k}\left(\mathscr{A} x^{k}-b\right)\right]^{+} \\
\mu^{1}= & {[0+1.05(4)]^{+}=4.2 . }
\end{aligned}
$$

Subgradient Optimization and Inequality Constraints

- For $\boldsymbol{\mu}^{1}=4.2$, the path $\boldsymbol{P}=\mathbf{1 - 3 - 2 - 5 - 6}$ solves the agrangian subproblem;
- Therefore,

$$
\begin{gathered}
L(\mu)=\min \left\{c_{P}+\mu\left(t_{P}-T\right): P \in \mathscr{P}\right\} \\
L(4.2)=15+4.2(10)-4.2(14)=15-16.8=-1.8 \\
- \text { And } \mathcal{A} \mathbf{x}^{1}-\mathrm{b} \text { equals }\left(t_{p}-14\right)=10-14=-4
\end{gathered}
$$

- Since the path 1-3-2-5-6 is feasible, and its cost of 15 is less than UB, we change UB to value 15.
- Therefore,

$$
\begin{aligned}
\theta_{1} & =0.8(15+1.8) / 16=0.84 \\
\mu^{2} & =[4.2+0.84(-4)]^{+}=0.84
\end{aligned}
$$

Subgradient Optimization and Inequality Constraints

\mathbf{k}	$\boldsymbol{\mu}^{\mathbf{k}}$	$\mathbf{t}_{\mathbf{p}}-\mathbf{T}$	$\mathbf{L}\left(\boldsymbol{\mu}^{\mathbf{k}}\right)$	$\boldsymbol{\lambda}_{\mathbf{k}}$	$\boldsymbol{\theta}_{\mathbf{k}}$
$\mathbf{0}$	0.0000	4	3.0000	0.80000	1.0500
1	4.2000	-4	-1.8000	0.80000	0.8400
2	0.8400	4	6.3600	0.80000	0.4320
3	2.5680	-4	4.7280	0.80000	0.5136
4	0.5136	4	5.0544	0.80000	0.4973
5	2.5027	-4	4.9891	0.40000	0.2503
6	1.5016	1	6.5016	0.40000	3.3993
7	4.9010	-6	-5.4059	0.40000	0.2267
8	3.5406	-4	0.8376	0.40000	0.3541
9	2.1244	-4	6.5026	0.40000	0.2124
10	1.2746	1	6.2746	0.40000	3.4902
11	4.7648	-6	-4.5886	0.40000	0.2177
12	3.4589	-4	1.1646	0.20000	0.1729
13	2.7671	-4	3.9316	0.20000	0.1384
14	2.2137	-4	6.1453	0.20000	0.1107
15	1.7709	1	6.7709	0.20000	1.6458

Subgradient Optimization and Inequality Constraints

16	3.4167	-4	1.3330	0.20000	0.1708
17	2.7334	-4	4.0664	0.20000	0.1367
18	2.1867	-4	6.2531	0.10000	0.0547
19	1.9680	1	6.9680	0.10000	0.8032
20	2.7712	-4	3.9150	0.10000	0.0693
21	2.4941	-4	5.0235	0.10000	0.0624
22	2.2447	-4	6.0212	0.05000	0.0281
23	2.1325	-4	6.4701	0.05000	0.0267
24	2.0258	-4	6.8966	0.05000	0.0253
25	1.9246	1	6.9246	0.00250	0.0202
26	1.9447	1	6.9447	0.00250	0.0201
27	1.9649	1	6.9649	0.00250	0.0201
28	1.9850	1	6.9850	0.00250	0.0200
29	2.0050	-4	6.9800	0.00250	0.0013
30	2.0000	-4	7.0000	0.00250	0.0012
31	1.9950	1	6.9950	0.00250	0.0200
32	2.0150	-4	6.9400	0.00250	0.0013
33	2.0100	-4	6.9601	0.00125	0.0006

Subgradient Optimization and Inequality Constraints

- From iterations 2 through 5, the shortest paths alternate between the paths 1-2-4-6 and 1-3-2-5-6.
- At the end of the fifth iteration, the algorithm has not improved upon (increased) the best Lagrangian objective function value of $\mathbf{6 . 3 6}$ for three iterations, so we reduce λ_{k} by a factor of 2 .
- In the next 7 iterations the shortest paths are the paths $1-2-5-6,1-3-5-6,1-3-2-5-6,1-3-2-5-6,1-2-5-6,1-3-5-$ 6 , and 1-3-2-5-6.

Subgradient Optimization and Inequality Constraints

- Once again for three consecutive iterations, the algorithm has not improved the best Lagrangian objective function value, so we decrease λ_{k} by a factor of 2 to value 0.2 .
- From this point on, the algorithm chooses either path 1-3-2-5-6 or path 1-2-5-6 as the shortest path at each step.
- As we see, the Lagrangian objective function value is converging to the optimal value $L^{*}=7$ and the Lagrange multiplier is converging to its optimal value of $\boldsymbol{\mu}^{*}=2$.

The End

