In the name of God

Network Flows

6. Lagrangian Relaxation 6.2 Solving the Lagrangian Multiplier Problem

Fall 2010

Instructor: Dr. Masoud Yaghini

Outline

Introduction

- Subgradient Optimisation Technique
- Subgradient Optimization and Inequality Constraints

Introduction

- Consider the *constrained shortest path problem*
- Suppose that now we have a time limitation of T = 14 instead of T = 10.
- When we relax the time constraint, the *Lagrangian multiplier function* L(μ) becomes:

$$L(\mu) = \min\{c_P + \mu(t_P - T) : P \in \mathcal{P}\}.$$

- where, \mathcal{P} is the collection of all directed paths from the source node 1 to the sink node *n*.

- For convenience, we refer to the quantity $c_p + \mu(t_P T)$ as the *composite cost* of the path *P*.
- For a specific value of the Lagrangian multiplier μ, we can solve L(μ) by enumerating all the directed paths in *P* and choosing the path with the smallest composite cost.
- We can solve the Lagrangian multiplier problem by determining $L(\mu)$ for all nonnegative values of the Lagrangian multiplier μ and choosing the value that achieves $\max_{\mu \ge 0} L(\mu)$.

• Path cost and time data with T = 14

Path P	Path cost _{CP}	Path time t _P	Composite cost $c_P + \mu (t_P - T)$
1-2-4-6	3	18	$3 + 4\mu$
1-2-5-6	5	15	5 + μ
1-2-4-5-6	14	14	14
1-3-2-4-6	13	13	13 – μ
1-3-2-5-6	15	10	15 – 4µ
1-3-2-4-5-6	24	9	24 – 5µ
1-3-4-6	16	17	16 + 3µ
1-3-4-5-6	27	13	27 — μ
1-3-5-6	24	8	24 – 6µ

• The composite cost $c_P + \mu(t_P - T)$ for any path *P* is a linear function of μ with an intercept of c_P and a slope of $(t_P - T)$

• Lagrangian function, T = 14

- To find the *optimal multiplier value* μ* of the Lagrangian multiplier problem, we need to find *the highest point* of the *Lagrangian multiplier function L*(μ).
- Suppose that we consider the polyhedron defined by those points that lie on or below the function *L*(μ).
- These are the shaded points in the Figure.
- Then geometrically, we are finding the highest point in a polyhedron defined by the function *L*(μ), which is a linear program.

• Consider the generic optimization model (P), defined

$$\min\{cx: \mathcal{A}x = b, x \in X\}$$

• and suppose that the set *X* is finite.

$$X = \{x^1, x^2, \ldots, x^K\}$$

• By relaxing the constraints Ax = b, we obtain the Lagrangian multiplier function:

$$L(\mu) = \min\{cx + \mu(\mathcal{A}x - b) : x \in X\}.$$

• By definition:

 $L(\mu) \leq cx^{k} + \mu(\mathscr{A}x^{k} - b) \quad \text{for all } k = 1, 2, \ldots, K.$

- In the space of composite costs and Lagrange multipliers μ, each function cx^k + μ(Ax^k - b) is a multidimensional "line" called a hyperplane (if μ is two-dimensional, it is a plane).
- The Lagrangian multiplier function $L(\mu)$ is the lower envelope of the hyperplanes $cx^k + \mu(Ax^k - b)$ for k = 1, 2, ..., K.
- In the Lagrangian multiplier problem, we wish to determine the highest point on this envelope

• We can find this the highest point by solving the optimization problem:

Maximize w

subject to

 $w \le cx^k + \mu(\mathscr{A}x^k - b)$ for all k = 1, 2, ..., K, μ unrestricted,

- Theorem.
 - The Lagrangian multiplier problem $L^* = \max_{\mu} L(\mu)$ with

$$L(\mu) = \min\{cx^k + \mu(\mathscr{A}x - b) : x \in X\}$$

- is equivalent to the linear programming problem

$$L^* = max\{w : w \le cx^k + \mu(Ax^k - b) \\ for \ k = 1, 2, ..., K\}.$$

In solving optimization problems with the nonlinear objective function *f*(*x*) of an *n*-dimensional vector *x*, researchers and practitioners often use *gradient methods*.

• Suppose that in solving the *Lagrangian multiplier problem*, we are at a point where the Lagrangian function has a unique solution \overline{x} .

$$L(\mu) = \min\{cx + \mu(\mathscr{A}x - b) : x \in X\}$$

• Since

$$L(\mu) = c\overline{x} + \mu(\mathscr{A}\overline{x} - b)$$

 The solution x̄ remains optimal for small changes in the value of μ, the *gradient* at this point is

$$\mathcal{A}\overline{x} - b$$

- A gradient method would change the value of μ as follows: $\mu \leftarrow \mu + \theta(\mathcal{A}\overline{x} b)$.
 - θ : is a step size (a scalar) that specifies how far we move in the gradient direction.
 - If $(\Re x b)_i = 0$, the solution x uses up exactly the required units of the *i*th resource, and we hold the Lagrange multiplier (the toll) μ_i of that resource at its current value;
 - If $(\mathcal{A}x b)_i < 0$, the solution *x* uses up less than the available units of the *i*th resource and we decrease the Lagrange multiplier μ_i on that resource;
 - If $(\mathcal{A}x b)_i > 0$, the solution x uses up more than the available units of the *i*th resource and we increase the Lagrange multiplier μ_i on that resource.

- To solve the Lagrangian multiplier problem, let μ⁰ be any initial choice of the Lagrange multiplier;
- we determine the subsequent values μ^k for k = 1, 2, ..., of the Lagrange multipliers as follows:

$$\mu^{k+1} = \mu^k + \theta_k(\mathscr{A}x^k - b).$$

• where x^k : is any solution to the Lagrangian subproblem when $\mu = \mu^k$ and θ_k is the step length at the *k*th iteration.

- To ensure that this method solves the Lagrangian multiplier problem, we need to exercise some care in the choice of the step sizes θ.
 - If we choose them too small, the algorithm would become stuck at the current point and not converge;
 - If we choose the step sizes too large, the iterates μ^k might overshoot the optimal solution and perhaps even oscillate between two nonoptimal solutions.

• Newton's method

- It is an important variant of the subgradient optimization procedure
- Suppose that

$$L(\mu^k) = cx^k + \mu^k(\mathscr{A}x^k - b)$$

- that is, x^k solves the Lagrangian subproblem when $\mu = \mu^k$

We assume that *x^k* continues to solve the Lagrangian subproblem as we vary μ; or, stated in another way, we make a linear approximation

$$r(\mu) = cx^k + \mu(\mathscr{A}x^k - b)$$
 to $L(\mu)$

• Newton's method (cont.)

- Suppose that we know the optimal value L^* of the Lagrangian multiplier problem (which we do not).
- Then we might move in the subgradient direction until the value of the linear approximation exactly equals L^* .

• The constrained shortest path example, T=14

• The constrained shortest path example

- The figure shows an example of Newton's method when applied to the constrained shortest path example, starting with $\mu^k = 0$.
- At this point, the path P = 1-2-4-6 solves the Lagrangian subproblem and $\mathcal{A}x \mathbf{b}$ equals $t_p \mathbf{T} = 18 14 = 4$.
- Since $L^* = 7$ and the path *P* has a cost $c_p = 3$, in accordance with this linear approximation, or Newton's method, we would approximate

$$L(\mu)$$
 by $r(\mu) = 3 + 4\mu$, set $3 + 4\mu = 7$

– and define the new value of μ as

 $\mu^{k+1} = (7 - 3)/4 = 1$

• In general, we set the step length θ_k so that

$$r(\mu^{k+1}) = cx^k + \mu^{k+1}(\mathscr{A}x^k - b) = L^*,$$

• since,

$$\mu^{k+1} = \mu^k + \theta_k(\mathscr{A}x^k - b),$$

• then,

 $r(\mu^{k+1}) = cx^k + [\mu^k + \theta_k(\mathscr{A}x^k - b)](\mathscr{A}x^k - b) = L^*.$

• recalling that

$$L(\mu^k) = cx^k + \mu(\mathscr{A}x^k - b)$$

• and letting the Euclidean norm of the vector *y*:

$$||y|| = (\sum_{j} y_{j}^{2})^{1/2}$$

• we can solve for the *step length* and find that

$$\theta_k = \frac{L^* - L(\mu^k)}{\|\mathscr{A}x^k - b\|^2}.$$

- Since we do not know the optimal objective function value *L** of the Lagrangian multiplier problem,
 - practitioners of Lagrangian relaxation often use the following popular heuristic for selecting the *step length*:

$$\theta_k = \frac{\lambda_k [UB - L(\mu^k)]}{\| \mathscr{A} x^k - b \|^2}.$$

- **UB** : is an upper bound on the optimal objective function value z^* of the problem (**P**), and so an upper bound on L^* as well
- λ_k : is a scalar chosen (strictly) between 0 and 2.

• The heuristic procedure:

- Initially, the upper bound is the objective function value of any known feasible solution to the problem (P).
- As the algorithm proceeds, if it generates a better (i.e., lower cost) feasible solution, it uses the objective function value of this solution in place of the upper bound UB.
- Usually, practitioners choose the scalars λ_k by starting with $\lambda_k = 2$ and then reducing λ_k whenever the best Lagrangian objective function value found so far has failed to increase in a specified number of iterations.
- Since this version of the algorithm has no convenient stopping criteria, practitioners usually terminate it after it has performed a specified number of iterations.

- we might note that the subgradient optimization procedure is not the only way to solve the Lagrangian multiplier problem:
 - practitioners have used a number of other heuristics, including methods known as *multiplier ascent methods*.

- If we apply Lagrangian relaxation to a problem with constraints *Ax b* stated in inequality form instead of the equality constraints, the Lagrange multipliers μ are constrained to be nonnegative.
- The update formula

$$\mu^{k+1} = \mu^k + \theta_k(\mathscr{A}x^k - b)$$

might cause one or more of the components μ_i of μ to become negative.

• To avoid this possibility, we modify the update formula as follows:

$$\mu^{k+1} = [\mu^k + \theta_k(\mathscr{A}x^k - b)]^+$$

- where, the notation [y]⁺ denotes the "positive part" of the vector y; that is, the *i*th component of [y]⁺ equals the maximum of 0 and y_i.
- Stated in another way, if the update formula $\mu^{k+1} = \mu^k + \theta_k (\mathcal{A} x^k - b)$
- would cause the *i*th component of μ_i to be negative, then we simply set the value of this component to be zero.

- We then implement all the other steps of the subgradient procedure exactly the same as for problems with equality constraints.
 - i.e., the choice of the step size 9 at each step and
 - the solution of the Lagrangian subproblems
- For problems with both equality and inequality constraints, we use a mixture of the equality and inequality versions of the algorithm

• The constrained shortest path example:

- We start to solve our constrained shortest path problem at $\mu^0 = 0$ with $\lambda^0 = 0.8$ and with UB = 24, the cost corresponding to the shortest path 1-3-5-6.
- Suppose that we choose to reduce the scalar λ_k by a factor of 2 whenever three successive iterations at a given value of λ_k have not improved on the best Lagrangian objective function value $L(\mu)$.
- The solution x^0 to the Lagrangian subproblem with $\mu = 0$ corresponds to the path P = 1-2-4-6, the Lagrangian subproblem has an objective function value of L(0) = 3, and the subgradient $\Re x^0 - b$ at $\mu = 0$ is $(t_p - 14) = 18 - 14 = 4$.

• bold lines denote the shortest path with *Lagrange multiplier* $\mu = 0$

- So at the first step, we choose

$$\theta_{k} = \frac{\lambda_{k} [UB - L(\mu^{k})]}{\| \mathscr{A}x^{k} - b \|^{2}}.$$

$$\theta_{0} = 0.8(24 - 3)/16 = 1.05,$$

$$\mu^{k+1} = [\mu^k + \theta_k (\mathcal{A}x^k - b)]^+$$
$$\mu^1 = [0 + 1.05(4)]^+ = 4.2.$$

- For $\mu^1 = 4.2$, the path P = 1-3-2-5-6 solves the agrangian subproblem;
- Therefore,

$$L(\mu) = \min\{c_P + \mu(t_P - T) : P \in \mathcal{P}\}.$$

L(4.2) = 15 + 4.2(10) - 4.2(14) = 15 - 16.8 = -1.8,

- And $\Re x^{l} b$ equals $(t_{p} 14) = 10 14 = -4$.
- Since the path 1-3-2-5-6 is feasible, and its cost of 15 is less than UB, we change UB to value 15.

- Therefore,

 $\theta_1 = 0.8(15 + 1.8)/16 = 0.84,$ $\mu^2 = [4.2 + 0.84(-4)]^+ = 0.84.$

k	μ ^κ	$t_p - T$	L(μ ^k)	λ _k	θ _k
0	0.0000	4	3.0000	0.80000	1.0500
1	4.2000	- 4	- 1.8000	0.80000	0.8400
2	0.8400	4	6.3600	0.80000	0.4320
3	2.5680	- 4	4.7280	0.80000	0.5136
4	0.5136	4	5.0544	0.80000	0.4973
5	2.5027	- 4	4.9891	0.40000	0.2503
6	1.5016	1	6.5016	0.40000	3.3993
7	4.9010	-6	- 5.4059	0.40000	0.2267
8	3.5406	-4	0.8376	0.40000	0.3541
9	2.1244	-4	6.5026	0.40000	0.2124
10	1.2746	1	6.2746	0.40000	3.4902
11	4.7648	-6	- 4.5886	0.40000	0.2177
12	3.4589	-4	1.1646	0.20000	0.1729
13	2.7671	-4	3.9316	0.20000	0.1384
14	2.2137	- 4	6.1453	0.20000	0.1107
15	1.7709	1	6.7709	0.20000	1.6458

	16	3.4167	- 4	1.3330	0.20000	0.1708
	17	2.7334	- 4	4.0664	0.20000	0.1367
	18	2.1867	-4	6.2531	0.10000	0.0547
	19	1.9680	1	6.9680	0.10000	0.8032
	20	2.7712	-4	3.9150	0.10000	0.0693
	21	2.4941	- 4	5.0235	0.10000	0.0624
	22	2.2447	-4	6.0212	0.05000	0.0281
	23	2.1325	- 4	6.4701	0.05000	0.0267
	24	2.0258	- 4	6.8966	0.05000	0.0253
	25	1.9246	1	6.9246	0.00250	0.0202
	26	1.9447	1	6.9447	0.00250	0.0201
	27	1.9649	1	6.9649	0.00250	0.0201
	28	1.9850	1	6.9850	0.00250	0.0200
i	29	2.0050	-4	6.9800	0.00250	0.0013
	30	2.0000	-4	7.0000	0.00250	0.0012
	31	1. 995 0	1	6.995 0	0.00250	0.0200
	32	2.0150	-4	6.9400	0.00250	0.0013
	33	2.0100	-4	6.9601	0.00125	0.0006
	I					

- From iterations 2 through 5, the shortest paths alternate between the paths 1-2-4-6 and 1-3-2-5-6.
- At the end of the fifth iteration, the algorithm has not improved upon (increased) the best Lagrangian objective function value of 6.36 for three iterations, so we reduce λ_k by a factor of 2.
- In the next 7 iterations the shortest paths are the paths 1-2-5-6, 1-3-5-6, 1-3-2-5-6, 1-3-2-5-6, 1-2-5-6, 1-3-5-6, and 1-3-2-5-6.

- Once again for three consecutive iterations, the algorithm has not improved the best Lagrangian objective function value, so we decrease λ_k by a factor of 2 to value 0.2.
- From this point on, the algorithm chooses either path 1-3-2-5-6 or path 1-2-5-6 as the shortest path at each step.
- As we see, the Lagrangian objective function value is converging to the optimal value L* = 7 and the Lagrange multiplier is converging to its optimal value of μ* = 2.

The End