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Introduction



Solving the Lagrangian Multiplier Problem

� Consider the constrained shortest path problem 

� Suppose that now we have a time limitation of T = 14 

instead of T = 10. 

� When we relax the time constraint, the Lagrangian 

multiplier function L(µ) becomes:

– where, P is the collection of all directed paths from the 

source node 1 to the sink node n. 



Solving the Lagrangian Multiplier Problem

� For convenience, we refer to the quantity cp + µ(tP - T) 

as the composite cost of the path P. 

� For a specific value of the Lagrangian multiplier µ, we 

can solve L(µ) by enumerating all the directed paths in 

P and choosing the path with the smallest composite 

cost. cost. 

� We can solve the Lagrangian multiplier problem by 

determining L(µ) for all nonnegative values of the 

Lagrangian multiplier µ and choosing the value that 

achieves maxµ ≥ 0 L(µ).



Solving the Lagrangian Multiplier Problem

� Path cost and time data with T = 14



Solving the Lagrangian Multiplier Problem

� The composite cost cP + µ(tP - T) for any path P is a 

linear function of µ with an intercept of cP and a slope 

of (tP - T)



Solving the Lagrangian Multiplier Problem

� Lagrangian function, T = 14



Solving the Lagrangian Multiplier Problem

� To find the optimal multiplier value µ* of the 

Lagrangian multiplier problem, we need to find the 

highest point of the Lagrangian multiplier function

L(µ). 

� Suppose that we consider the polyhedron defined by 

those points that lie on or below the function L(µ). those points that lie on or below the function L(µ). 

� These are the shaded points in the Figure. 

� Then geometrically, we are finding the highest point in 

a polyhedron defined by the function L(µ), which is a 

linear program. 



Solving the Lagrangian Multiplier Problem

� Consider the generic optimization model (P), defined

� and suppose that the set X is finite.  

� By relaxing the constraints Ax = b, we obtain the � By relaxing the constraints Ax = b, we obtain the 

Lagrangian multiplier function:

� By definition:



Solving the Lagrangian Multiplier Problem

� In the space of composite costs and Lagrange 

multipliers µ, each function cxk + µ(Axk - b) is a 

multidimensional "line" called a hyperplane (if µ is 

two-dimensional, it is a plane). 

� The Lagrangian multiplier function L(µ) is the lower 

envelope of the hyperplanes cxk + µ(Axk - b) for k = 1, envelope of the hyperplanes cxk + µ(Axk - b) for k = 1, 

2, …, K. 

� In the Lagrangian multiplier problem, we wish to 

determine the highest point on this envelope



Solving the Lagrangian Multiplier Problem

� We can find this the highest point by solving the 

optimization problem:



Solving the Lagrangian Multiplier Problem

� Theorem. 

– The Lagrangian multiplier problem L* = maxµ L(µ) with 

– is equivalent to the linear programming problem 



Subgradient Optimisation Technique 



Subgradient Optimisation Technique

� In solving optimization problems with the nonlinear 

objective function f(x) of an n-dimensional vector x, 

researchers and practitioners often use gradient 

methods. 



Subgradient Optimisation Technique

� Suppose that in solving the Lagrangian multiplier 

problem, we are at a point where the Lagrangian 

function has a unique solution x̅.

� Since 

� The solution x̅ remains optimal for small changes in 

the value of µ, the gradient at this point is 



Subgradient Optimisation Technique

� A gradient method would change the value of µ as 

follows:

– θ : is a step size (a scalar) that specifies how far we move in 

the gradient direction. 

– If  (AAAAx - b)i = 0, the solution x uses up exactly the required 

units of the ith resource, and we hold the Lagrange units of the ith resource, and we hold the Lagrange 

multiplier (the toll) µi of that resource at its current value; 

– If  (AAAAx – b)i < 0, the solution x uses up less than the 

available units of the ith resource and we decrease the 

Lagrange multiplier µi on that resource; 

– If  (AAAAx – b) i > 0, the solution x uses up more than the 

available units of the ith resource and we increase the 

Lagrange multiplier µi on that resource.



Subgradient Optimisation Technique

� To solve the Lagrangian multiplier problem, let µ0 be 

any initial choice of the Lagrange multiplier; 

� we determine the subsequent values µk for k = 1, 2, …, 

of the Lagrange multipliers as follows:

� where xk : is any solution to the Lagrangian 

subproblem when µ =  µk and θk is the step length at 

the kth iteration.



Subgradient Optimisation Technique

� To ensure that this method solves the Lagrangian 

multiplier problem, we need to exercise some care in 

the choice of the step sizes θ. 

– If we choose them too small, the algorithm would become 

stuck at the current point and not converge; 

– If we choose the step sizes too large, the iterates µk might – If we choose the step sizes too large, the iterates µk might 

overshoot the optimal solution and perhaps even oscillate 

between two nonoptimal solutions. 



Subgradient Optimisation Technique

� Newton's method

– It is an important variant of the subgradient optimization 

procedure 

– Suppose that 

– that is, xk solves the Lagrangian subproblem when µ = µk– that is, xk solves the Lagrangian subproblem when µ = µk

– We assume that xk continues to solve the Lagrangian 

subproblem as we vary µ; or, stated in another way, we 

make a linear approximation 



Subgradient Optimisation Technique

� Newton's method (cont.)

– Suppose that we know the optimal value L* of the 

Lagrangian multiplier problem (which we do not). 

– Then we might move in the subgradient direction until the 

value of the linear approximation exactly equals L*. 



Subgradient Optimisation Technique

� The constrained shortest path example, T=14



Subgradient Optimisation Technique

� The constrained shortest path example 

– The figure shows an example of Newton’s method when 

applied to the constrained shortest path example, starting 

with µk = 0. 

– At this point, the path P = 1-2-4-6 solves the Lagrangian 

subproblem and AAAAx – b equals tp - T = 18 - 14 = 4. subproblem and AAAAx – b equals tp - T = 18 - 14 = 4. 

– Since L* = 7 and the path P has a cost cp = 3, in accordance 

with this linear approximation, or Newton's method, we 

would approximate 

L(µ) by r(µ) = 3 + 4µ, set 3 + 4µ = 7

– and define the new value of µ as 

µk + 1 = (7 - 3)/4 = 1



Subgradient Optimisation Technique

� In general, we set the step length θk so that 

� since,

� then,



Subgradient Optimisation Technique

� recalling that

� and letting the Euclidean norm of the vector y:

� we can solve for the step length and find that



Subgradient Optimisation Technique

� Since we do not know the optimal objective function 

value L* of the Lagrangian multiplier problem, 

– practitioners of Lagrangian relaxation often use the 

following popular heuristic for selecting the step length:

� UB : is an upper bound on the optimal objective function value z*

of the problem (P), and so an upper bound on L* as well

� λk : is a scalar chosen (strictly) between 0 and 2. 



Subgradient Optimisation Technique

� The heuristic procedure:

– Initially, the upper bound is the objective function value of 

any known feasible solution to the problem (P). 

– As the algorithm proceeds, if it generates a better (i.e., 

lower cost) feasible solution, it uses the objective function 

value of this solution in place of the upper bound UB. value of this solution in place of the upper bound UB. 

– Usually, practitioners choose the scalars λk by starting with 

λk = 2 and then reducing λk whenever the best Lagrangian 

objective function value found so far has failed to increase 

in a specified number of iterations. 

– Since this version of the algorithm has no convenient 

stopping criteria, practitioners usually terminate it after it 

has performed a specified number of iterations. 



Subgradient Optimisation Technique

� we might note that the subgradient optimization 

procedure is not the only way to solve the Lagrangian 

multiplier problem: 

– practitioners have used a number of other heuristics, 

including methods known as multiplier ascent methods. 



Subgradient Optimization and Inequality 

ConstraintsConstraints



Subgradient Optimization and Inequality Constraints

� If we apply Lagrangian relaxation to a problem with 

constraints AAAAx - b stated in inequality form instead of 

the equality constraints, the Lagrange multipliers µ are 

constrained to be nonnegative. 

� The update formula 

� might cause one or more of the components µi of µ to 

become negative. 



Subgradient Optimization and Inequality Constraints

� To avoid this possibility, we modify the update 

formula as follows:

� where, the notation [y]+ denotes the "positive part" of � where, the notation [y] denotes the "positive part" of 

the vector y; that is, the ith component of [y]+ equals 

the maximum of 0 and yi. 

� Stated in another way, if the update formula 

� would cause the ith component of µi to be negative, 

then we simply set the value of this component to be 

zero. 



Subgradient Optimization and Inequality Constraints

� We then implement all the other steps of the 

subgradient procedure exactly the same as for 

problems with equality constraints.

– i.e., the choice of the step size 9 at each step and 

– the solution of the Lagrangian subproblems

For problems with both equality and inequality � For problems with both equality and inequality 

constraints, we use a mixture of the equality and 

inequality versions of the algorithm



Subgradient Optimization and Inequality Constraints

� The constrained shortest path example:

– We start to solve our constrained shortest path problem at 

µ0 = 0 with λ0 = 0.8 and with UB = 24, the cost 

corresponding to the shortest path 1-3-5-6. 

– Suppose that we choose to reduce the scalar λk by a factor 

of 2 whenever three successive iterations at a given value of of 2 whenever three successive iterations at a given value of 

λk have not improved on the best Lagrangian objective 

function value L(µ). 

– The solution x0 to the Lagrangian subproblem with µ = 0

corresponds to the path P = 1-2-4-6, the Lagrangian 

subproblem has an objective function value of L(0) = 3, and 

the subgradient AAAAx0 – b at µ = 0 is (tp – 14) = 18 - 14 = 4.



Subgradient Optimization and Inequality Constraints

� bold lines denote the shortest path with Lagrange 

multiplier µ = 0



Subgradient Optimization and Inequality Constraints

– So at the first step, we choose



Subgradient Optimization and Inequality Constraints

– For µ1 = 4.2, the path P = 1-3-2-5-6 solves the agrangian

subproblem; 

– Therefore, 

L(4.2) = 15 + 4.2(10) - 4.2(14) = 15 - 16.8 = -1.8, L(4.2) = 15 + 4.2(10) - 4.2(14) = 15 - 16.8 = -1.8, 

– And AAAAxl – b equals (tp – 14) = 10 – 14 = - 4.

– Since the path 1-3-2-5-6 is feasible, and its cost of 15 is less 

than UB, we change UB to value 15. 

– Therefore,



Subgradient Optimization and Inequality Constraints



Subgradient Optimization and Inequality Constraints



Subgradient Optimization and Inequality Constraints

� From iterations 2 through 5, the shortest paths 

alternate between the paths 1-2-4-6 and 1-3-2-5-6. 

� At the end of the fifth iteration, the algorithm has not 

improved upon (increased) the best Lagrangian 

objective function value of 6.36 for three iterations, so 

we reduce λ by a factor of 2. we reduce λk by a factor of 2. 

� In the next 7 iterations the shortest paths are the paths 

1-2-5-6, 1-3-5-6, 1-3-2-5-6, 1-3-2-5-6, 1-2-5-6, 1-3-5-

6, and 1-3-2-5-6. 



Subgradient Optimization and Inequality Constraints

� Once again for three consecutive iterations, the 

algorithm has not improved the best Lagrangian 

objective function value, so we decrease λk by a factor 

of 2 to value 0.2. 

� From this point on, the algorithm chooses either path 

1-3-2-5-6 or path 1-2-5-6 as the shortest path at each 1-3-2-5-6 or path 1-2-5-6 as the shortest path at each 

step. 

� As we see, the Lagrangian objective function value is 

converging to the optimal value L* = 7 and the 

Lagrange multiplier is converging to its optimal value 

of µ* = 2.



The End


