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Introduction

� In many application contexts, several physical 

commodities, vehicles, or messages, each governed by 

their own network flow constraints, share the same 

network. 

� If the commodities do not interact in any way, then to 

solve problems with several commodities, we would solve problems with several commodities, we would 

solve each single-commodity problem separately.

� In other situations, however, because the commodities 

do share common facilities, the individual single 

commodity problems are not independent, so to find 

an optimal flow, we need to solve the problems in 

concert with each other. 
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� One such model, known as the multicommodity flow 

problem, in which the individual commodities share 

common arc capacities. 

� That is, each arc has a capacity uij that restricts the 

total flow of all commodities on that arc.
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� Notation:

– : the flow of commodity k on arc (i, j)

– xk : the flow vector for commodity k.

– ck : the per unit cost vector for commodity k. 

– Using this notation we Can formulate the multicommodity 

flow problem as follows:flow problem as follows:
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� The multicommodity flow problem formulation:
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� This formulation has a collection of K ordinary mass 

balance constraints, modeling the flow of each 

commodity k = 1, 2, . . . , K. 

� The bundle constraints tie together the commodities 

by restricting the total flow of all the commodities on 

each arc (i, j) to at most uij. 
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� Note that we also impose individual flow bounds on 

the flow of commodity k on arc (i, j). 

� Many applications do not impose these bounds, so for � Many applications do not impose these bounds, so for 

these applications we set each bound to +∞. 
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� In our discussion, it will be more convenient to state 

the bundle constraints as equalities instead of 

inequalities. 

� In these instances we introduce nonnegative slack

variables sij and write the bundle constraints as: 

� The slack variable sij for the arc (i, j) measures the 

unused bundle capacity on that arc. 



Assumptions 

� The multicommodity flow model imposes capacities 

on the arcs but not on the nodes. 

� This modeling assumption imposes no loss of 

generality, since by using the node splitting 

techniques, we can use this formulation to model 

situations with node capacities as well. situations with node capacities as well. 

� Three assumptions are:

– Homogeneous goods assumption

– No congestion assumption

– Indivisible goods assumption



Assumptions 

� Homogeneous goods assumption

– We are assuming that every unit flow of each commodity 

uses 1 unit of capacity of each arc. 

– A more general model would permit the unit flow of each 

commodity k to consume a given amount      of the capacity 

associated with each arc (i, j), and replace the bundle associated with each arc (i, j), and replace the bundle 

constraint with a more general resource availability 

constraint:



Assumptions 

� No congestion assumption

– We are assuming that we have a hard (i.e., fixed) capacity 

on each arc and that the cost on each arc is linear in the 

flow on that arc. 

– In some applications as the flow of any commodity 

increases on an arc, we incur an increasing and nonlinear increases on an arc, we incur an increasing and nonlinear 

cost on that arc.

– For example, in traffic networks where the objective 

function is to find the flow pattern of all the commodities 

that minimizes overall system delay. 

� In this setting, because of queuing effects, the greater the flow on 

an arc, the greater is the queuing delay on that arc. 

� This make the nonlinear multicommodity flow problems. 



Assumptions 

� Indivisible goods assumption

– The model assumes that the flow variables can be 

fractional. 

– In some applications the variables must be integer valued. 

– In these instances the model that we are considering might 

still prove to be useful, still prove to be useful, 

� the linear programming model might either be a good 

approximation of the integer programming model

� or we can use the linear programming model as a linear 

programming relaxation of the integer program and embed it within 

branch-and-bound approach. 



Solution Approaches

� Researchers have developed several approaches for 

solving the multicommodity flow problem, including: 

– Price-directive decomposition methods

� Lagrangian Relaxation method

� Dantzig-Wolfe decomposition method

– Resource-directive decomposition methods – Resource-directive decomposition methods 

– Partitioning methods 



Solution Approaches

� Lagrangian Relaxation method

– bring bundle constraints into the objective function and 

place Lagrangian multipliers or prices on them

– the resulting problem decomposes into a separate minimum 

cost flow problem for each commodity k. 

– These methods remove the capacity constraints and instead – These methods remove the capacity constraints and instead 

charge each commodity for the use of the capacity of each 

arc. 

– These methods attempt to find appropriate prices so that 

some optimal solution to the resulting pricing problem or 

Lagrangian subproblem also solves the overall 

multicommodity flow problem. 

– Several methods are available for finding appropriate 

prices.



Solution Approaches

� Dantzig-Wolfe decomposition method 

– This is another approach for finding the correct prices; 

– this method is a general-purpose approach for decomposing 

problems that have a set of easy constraints and also a set 

of hard constraints (that is, constraints that make the 

problem much more difficult to solve). problem much more difficult to solve). 

– For multicommodity flow problems, the network flow 

constraints are the easy constraints and the bundle 

constraints are the hard constraints. 

– The approach begins by ignoring or imposing prices on the 

bundle constraints and solving subproblems with only the 

single-commodity network flow constraints. 



Solution Approaches

� Dantzig-Wolfe decomposition method (cont.)

– The method uses linear programming to update the prices 

so that the solutions generated from the subproblems satisfy 

the bundle constraints. 

– The method iteratively solves two different problems: 

� A subproblem and � A subproblem and 

� A price-setting linear program. 



Solution Approaches

� Resource-directive decomposition methods 

– These methods view the multicommodity flow problem as a 

capacity allocation problem. 

– All the commodities are competing for the fixed capacity uij

of every arc (i, j) of the network. 

– Resource-directive methods begin by allocating the – Resource-directive methods begin by allocating the 

capacities to the commodities, and 

– Then use information collected from the solution to the 

resulting single-commodity problems to reallocate the 

capacities in a way that improves the overall system cost. 



Solution Approaches

� Partitioning methods 

– These methods exploit the fact that the multicommodity 

flow problem is a specially structured linear program with 

embedded network flow problems. 

– We can use the network simplex method to solve any 

single-commodity flow problem, which works by single-commodity flow problem, which works by 

generating a sequence of improving spanning tree 

solutions. 

– The partitioning method maintains a linear programming 

basis that is composed of bases (spanning trees) of the 

individual single-commodity flow problems as well as 

additional arcs that are required to "tie" these solutions 

together to accommodate the bundle constraints. 



Optimality Conditions



Optimality Conditions

� Optimality conditions for the multicommodity flow 

problem is for characterizing when a given feasible 

solution was optimal. 

� It permitted us to assess whether or not we have found 

an optimal solution to the problem. 

Since the multicommodity flow problem is a linear � Since the multicommodity flow problem is a linear 

program, we can use linear programming optimality 

conditions to characterize optimal solutions to the 

problem.



Optimality Conditions

� The multicommodity flow problem formulation:



Optimality Conditions

� The multicommodity flow formulation has one bundle 

constraint for every arc (i, j) of the network and one 

mass balance constraint for each node-commodity 

combination

� Types of dual variables of dual program : 

– a price w on each arc (i, j)– a price wij on each arc (i, j)

– a node potential πk(i) for each combination of commodity 

k and node i.



Optimality Conditions

� The dual of the multicommodity flow problem:



Optimality Conditions

� The reduced cost of arc (i, j) with respect to 

commodity k as follows: 

� In matrix notation, this definition is:� In matrix notation, this definition is:



Optimality Conditions

� Complementary slackness (optimality) conditions

– The optimality conditions for a linear programming, called 

the complementary slackness (optimality) conditions, 

– It states that a primal feasible solution x and a dual feasible 

solution (w, πk) are optimal to the respective problems if 

and only if the product of each primal (dual) variable and and only if the product of each primal (dual) variable and 

the slack in the corresponding dual (primal) constraint is 

zero. 



Optimality Conditions

� Multicommodity flow complementary slackness 

conditions

– Let       denote a specific value of the flow variable

– The commodity flows       are optimal in the 

multicommodity flow problem if and only if they are 

feasible and for some choice of (nonnegative) arc prices wijfeasible and for some choice of (nonnegative) arc prices wij

and (unrestricted in sign) node potentials πk(i), the reduced 

costs and arc flows satisfy the complementary slackness 

conditions



Optimality Conditions

� Multicommodity flow complementary slackness 

conditions



Optimality Conditions

� Condition (a) 

– states that the price wij of arc (i, j) is zero if the optimal 

solution does not use all of the capacity uij of the arc. 

– That is, if the optimal solution does not fully use the 

capacity of that arc, we could ignore the constraint (place 

no price on it). no price on it). 

� Optimal arc prices and optimal node potentials

– We refer to any set of arc prices and node potentials that 

satisfy the complementary slackness conditions as optimal 

arc prices and optimal node potentials. 



Optimality Conditions

� The connection between the multicommodity and 

single-commodity flow problems.

� Theorem: Partial Dualization

– Let       be optimal flows and let wij be optimal arc prices for 

the multicommodity flow problem. Then for each 

commodity k, the flow variables      for (i, j) œ A solve the commodity k, the flow variables      for (i, j) œ A solve the 

following (uncapacitated) minimum cost flow problem:



Optimality Conditions

� Proof.

– Since      are optimal flows and wij are optimal arc prices for the 

multicommodity flow problem, these variables together with 

some set of node potentials πk(i) satisfy the complementary 

slackness condition. 

– The following conditions are the optimality conditions for the 

uncapacitated minimum cost flow problem for commodity k with uncapacitated minimum cost flow problem for commodity k with 

arc costs   

– This observation implies that the flows       solve the 

corresponding minimum cost flow problems. .



The End


