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Lagrangian Relaxation

® The multicommodity flow problem formulation:

Minimize 2 ckxk
l<k=K

subject to

S xbk=uw; forall (i, j) € A,

1=k=K

e

Nxk=b  fork=1,2,...,K,

O<xk=uf forall(jj)EAandalk=1,2,...



Lagrangian Relaxation

e We associate nonnegative Lagrange multipliers w;
with the bundle constraints, creating the following
Lagrangian subproblem:

Lw) =min > c**+ > wy (3 xf— uy)

I=k=K (i, HEA 1=k=K
e or, equivalently,

Liw) =min > > (c&+ wyxs — > wyuy

1=k=K (i,))EA (i, )EA

e subject to

Nxk=bk forallk=1,...,K,
xk=0 forall (i,j) EAandallk =1,2,...,K.



Lagrangian Relaxation

e Since the term

— 2 pea Wil
e 1s a constant for any given choice of the Lagrange
multipliers therefore we can ignore it.

e The resulting objective function has a cost
C fj + W; 1

. . : k
e associated with every flow variable X;;



Lagrangian Relaxation

e Since none of the constraints in this problem contains
the flow variables for more than one of the
commodities,

— the problem decomposes into separate minimum cost flow
problems, one for each commodity.
e Consequently, to apply the subgradient optimization
procedure to this problem, we would alternately

— (1) solve a set of minimum cost flow problems (for a fixed
value of the Lagrange multipliers w) with the cost
coefficients c‘;}f'-l- Wij

— (2) update the multipliers by the algorithmic procedures



Lagrangian Relaxation

o If ¥% denotes the optimal solution to the minimum
cost flow subproblems when the Lagrange multipliers
have the value w¥ at the gth iteration, the subgradient
update formula becomes:

witl = [wd + 0, ( D, y§ — uy)l?*
1=k=K

e In this expression, the notation [a@]* denotes the
positive part of @, that 1s, max(a, 0).

e The scalar 0, 1s a step size specitying how far we
move from the current solution w



Lagrangian Relaxation

e If the subproblem solutions yf; use more than the
available capacity u;; of that arc, the update formula

increases the multiplier W# on arc (i, j) by the amount:

(zlﬂkﬂK }’f-ff — H:‘j)

e If the subproblem solutions yﬁj- use less than the
available capacity of that arc, the update formula
reduces the Lagrange multiplier of arc (i, j) by the
amount:

(uij — ZlﬂkﬂK yf,r)



Lagrangian Relaxation

e The decrease would cause the multiplier wg* ! to
become negative, we reduce the multiplier to value
ZETO.

e We choose the step sizes 9q for iterations g =1, 2, . . .,
1n accordance with:

o, — MIUB — L")
T dxk - b2




Lagrangian Relaxation

e Whenever we apply Lagrangian relaxation to any
linear program, such as the multicommodity flow
problem, the optimal value

L* = max,=o L(w)

e of the Lagrangian multiplier problem equals the
optimal objective function value z* of the linear
program.



Lagrangian Relaxation

e Example:

— Consider a two-commodity problem

10 units

ko
i

¢; for all arcs (i, j) and
for all commoditiesk =1, 2

10 units

20 units




Lagrangian Relaxation

e For any choice of the Lagrange multipliers w,, and
Ws1tl for the two capacitated arcs (s!, t!) and (1, 2), the
problem decomposes into two shortest path problems.

e If we start with the Lagrange multipliers

W(l)z = ngrl =0
e then 1n the subproblem solutions, the shortest path:

— the shortest path s!-t! carries 10 units of flow at a cost of
1(10) =10 and,

— the shortest path s2-1-2-t* carries 20 units of flow at a cost
of 3(20) = 60

— Therefore, L(0) =10 + 60 = 70 is a lower bound on the
optimal objective function value for the problem.



Lagrangian Relaxation

® Since
y-'}"r‘ + yglrl ~ Ustp1 = J
yiz ¥y — uz = 10
e The update formulas become:
witl = [wh + 6, ( X v — up)l”

W}z = [0 + 0o:10]"

e If we choose 0, = 1, then
waa = 5and wi, = 10



Lagrangian Relaxation

e The new shortest path solutions send:
— 10 units on the path s'-# at a cost of (1 +5) (10) = 60
— 20 units on the path s2-£* at a cost of 5(20) = 100

e The new lower bound obtained through:
Liw)=min > > &+ wixt— 2> wyu

1=k=K (i, )EA (i,J))EA
60 + 100 — W%zulg — W;I;IL{SIII =

160 — 10(10) — 5(5) = 35

e The value of the lower bound has decreased.



Lagrangian Relaxation

e At this point:
y;m + yﬁm — Ug1;1 = §

i 2
Yiz T Y12 — Uz = -10
® so the update formulas become

witl = [w§ + 6,( > yi — upl*
I=k=K

wsin = [5 + 0o-5]7

W}z = [10 — 9010]+
e If we choose 0, =1,

weipn = 10

W%2=0



Lagrangian Relaxation

e The new shortest path solutions send:
— 10 units on the path s'-# at a cost of (1 + 10) (10) = 110 and
— 20 units on the path s2-1-2-¢* at a cost of 3(20) = 60

e If we continue by choosing the step sizes for the kth
iteration as 0, = 1/k, we obtain the set of iterates:



Lagrangian Relaxation

Iteration Shortest Shortest path 10w9, Lower bound
number ¢ w1, wit,1 paths costs + Swh - L(w%) 0,
0 0 0 sl—f! 10(1) 0 70 1
§2-1-2- 200+ 1 + 1)
i 10 5 sl 10(1 + 35) 125 35 1
§2-1 20(5)
2 0 10 st—11 10(1 + 10) 50 120 0.5
§2—1-2~£* 200 + 1+ 1)
3 5 12.5 st 101 + 12.5) 112.5 122.5 0.333
212 20(5)
4 1.67 14.17 s-1-2-¢ 10(5 + 2.67 + 5) 87.55 132.5 0.25
§2-1-2-1 201 + 267+ 1)
5 6.67 1292 -7 10(1 + 12.92) 131.3 107.9 0.2
§—? 20(5)
6 4.67 13.92 si-7! 10(1 + 13.92) 116.3 132.9 0.167
o 20(5)
7 3 14.75 st—1-2—-1! 105 + 4 + 5) 103.8 136.3 0.143
R 20(5)




Lagrangian Relaxation

Iteration Shortest Shortest path 10w, Lower bound
number ¢ wi w1 paths costs + Switl - L(w?) 0,
8 3 14.04 sl-1-2-1! 105 + 4 + 35) 100.2 139.8 0.125
2t 20(5)
9 3 13.41 sle1-2-! 105 + 4 + 5) 97.05 143.0 0.111
s*—r* 20(5)
10 3 12.86 st—t! 10(1 + 12.86) 04.3 144.3 0.1
521 20(3)
11 2 13.36 s1—1-2—¢! 105 + 3 + 5) 86.8 143.2 0.091
512 20(5)
12 2 12.9 si-1-2-r 105 + 3 + 35) 84.5 145.5 0.083
s> 20(5)
13 2 12.48 sl—1-2-¢! 105 + 3 +5) 82.2 147.6 0.077
5212 20(5)
14 2 12.09 sl—1-2-¢ 105 + 3 + 5) 80.25 149.5 0.071
s*—f 20(5)




Lagrangian Relaxation

e From iteration 14 on, the values of the Lagrange
multipliers oscillate about, and converge to, their
optimal values:

e The optimal lower bound oscillates about its optimal
value 150, which equals the optimal objective function
value of the multicommodity flow problem.



Lagrangian Relaxation

e This figure shows how the values of the Lagrange
multipliers vary during the execution of the algorithm
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Lagrangian Relaxation

e This figure shows how the values of Lagrangian lower
bounds vary during the execution of the algorithm
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Lagrangian Relaxation

e Advantages of subgradient optimization for solving
the Lagrangian multiplier problem:

— (1) This solution approach permits us to exploit the
underlying network flow structure.

— (2) The formulas for updating the Lagrange multipliers w;;
are rather small computationally and very easy to encode in
a computer program.



Lagrangian Relaxation

e Limitations of subgradient optimization:

— (1) To ensure convergence we need to take small step sizes;
as a result, the method does not converge very fast.

— (2) the optimal flows ¥y solve the Lagrangian subproblem,
these subproblems might also have other optimal solutions
that do not satisfy the bundle constramts.

¢ For example for the problem we have just solved, with the optimal
Lagrange multipliers w,, = 2 and Ws1,1 = 12, the shortest paths
subproblems have solutions with 10 units on the path s'-# and 20 units
on the path s2->

¢ This solution violates the capacity of the arc (s1, #).

¢ In general, to obtain optimal flows, even after we have solved the
Lagrangian multiplier problem, requires additional work.



The End



