In the name of God

Network Flows

8. Capacitated Multicommodity Network
Design Problems
8.1 Simplex-Based Tabu Search

Fall 2010
Instructor: Dr. Masoud Yaghini

1. Introduction

Introduction

e The goal of the paper (Crainic et al. (2000))1s to
present an efficient procedure to find good feasible
solutions to fixed-charge, capacitated,

multicommodity network design problem with linear
costs (CMND).

Introduction

e The contribution of this paper 1s two-fold.

— First, 1t provides an efficient heuristic for a difficult
network optimization problem.

— Second, 1t expands our understanding of the tabu search
metaheuristic by studying the relationships among the tabu

search framework, simplex pivoting, and column
generation.

2. Formulation and Algorithmic Ideas

Formulations

o G = (N, A : the graph underlying the network to be
designed,

e N : the set of nodes,

e A={a=(@J) i eN,je N} the set of arcs (for the
sake of simplicity, we assume all arcs to be directed
design arcs)

e P : the set of commodities to be distributed.

e p € £ acommodity to be the flow between an origin
node ¥ € N and a destination node s? e N

e w? : the corresponding demand is denoted w”

Formulations

o c; : the unit cost of moving commodity p through the
arc a

e /. : the tfixed-cost of including the arc in the design of
the network

e u_ : the total capacity of the arc.
e /P : all paths from 7’ to s in G.

') CZ = 1 if arc a is in the [path for commodity p, and
1s 0 otherwise,

ok lp : the variable (or per-unit) cost of path [€ /7

P — 2ENZ
ﬁ:[ZEZLIEEQQQ. C

aal*

Formulations

e y_: the decision variables concern the selection of arcs
for the final design of the network, y, = 1 1f arc a 1s
included (opened) and 0, otherwise

o i/ : the flow of commodity p on path

o xé’ : the arc flows, can be obtained by

p — AN
Xa 2cqr N)OL.

Formulations

e The general form of the path-based formulation of the
fixed-cost, capacitated multicommodity network
design problem (PCMND) may then be written as:

Formulations

Minimize z(h, y) = >, fy.,+ >, >, kih!

aEA pEP lEXP

Subject to > ht = w Vp € P,

[ESp

2 z hioh, <u,y, Vaed,

pEP [ELP
hf=0 Vpe®P ledfr,
y,=10, 1} Vae d.

Algorithmic Ideas

e for any set of values y of the design variables y, the
path-based formulation of the CMND becomes a
capacitated multicommodity minimum cost network
flow (MCNF) problem 1n path flow variables

Algorithmic Ideas

e H(p) : the set of all feasible path flows in PCMND for
a given J.

e H(p) : 1s also the set of all feasible path flows for the
corresponding MCNPF, for a given y.

e an optimal solution to MCNF problem can always be
found at an extreme point of H(), assuming H(®) # Q.

e H(p) : the set of extreme points.

Algorithmic Ideas

e Considernow H=H({y = 1)

e the set of feasible path flows when all the design arcs
are open (1.e., y, = 1, a € A), and its associated set of
extreme points H.

e H 1s defined by the set of constraints:

> bt = w? Vp e P,
=

Z Chidh =uy, Vaed,
p=EP I=FP

=0 VYpe®, e

Algorithmic Ideas

e it 1s verified that

e where y 1s the
vectors.

H = Uyew % (1),

set of all possible design variable

e for any given path flow pattern 7 € H, a design with
minimal cost relative to the path flows, denoted y(h),
can be obtained by

0 if D, ,e0 Diew SR =0
1 otherwise

y. () =

Algorithmic Ideas

® Where [stands for the set of paths for commodity p
that use the designarca, [’ c I*

e An optimal solution to the CMND can therefore be
found by complete or implicit enumeration of the
elements of H.

Algorithmic Ideas

e A solution procedure for the CMND based on
enumerating the elements of H 1s likely to be
extremely time-consuming

e Alternatively, the previous property may be used to
define local search heuristics for the CMND: the
adjacency relationships in H define a natural
neighborhood structure, while the pivoting rules of the
simplex method provide an efficient way to reach the
neighbors of any given solution.

e Thus, the fundamental 1dea of the approach we
propose for solving the CMND 1is to use a tabu search
method to explore the solution space H,

Algorithmic Ideas

e In the proposed method the revised simplex algorithm
offers the framework within which the neighborhood
1s constructed and explored, and moves are evaluated,
selected, and implemented.

Algorithmic Ideas

e The algorithm exhibits

— the main structure of the primal simplex method with basis
partitioning and

— column generation.

3. Tabu Search for Network Design

Tabu Search for Network Design

e TS method:

1. Obtain initial solution;
6: Set of candidates — current paths;
Liposr = o, div = 0.

2. Local Search.

3. If div < max_div then

e Perform diversification moves;
e div =div + 1;
* Go to Step 2.

4. Else STOP.

Tabu Search for Network Design

e max_div : a predefined number of diversification
phases

e Z, ... the best solution encountered during the search

e Computations stop once a predefined number of
diversification phases (max_div) have been performed.

The Solution Space

e the solution space we want to explore 1s the set

?{ UI;EQ} %(}/)

— of the extreme points of H, defined over the set of all possible network
configurations (design variable vectors) y by equations:

2

[ESP

w? Vp € P,

2 2 hioh <= uy, Va € d,

pEP €SP

hf = 0 Vp € P, l e L7,

3.1 Neighborhoods and Moves

Neighborhoods and Moves

e Two neighborhoods are defined:
— a continuous neighborhood for the local search phase

— adiscrete neighborhood used to diversify the search

Neighborhoods and Moves

e The cont{nuous (or local) neighborhood, N(h), of any
element h € H , is defined as

— the subset of all extreme points of H adjacent to A, that is,
all extreme points that can be reached from /4 by one
simplex pivot.

— Consequently, in linear programming terms, a local move
corresponds to a transition from one basis of the system to
an adjacent one: a basic path thus becomes unbasic, while a
previously unbasic path takes its place in the basis.

Neighborhoods and Moves

e Generally, not all the path variables are available at
each 1teration.

e Consider the sets [/ = {available paths for commodity
p at iteration ¢}, for all p € P, and H, the
corresponding polyhedron defined by:

> h=w' Yp€EP,

lest

> > hhet+s,=u, Va€dl,

pEP !'Efff
=0 VYpeEP, IE L,

s, =0 Vaed,

Neighborhoods and Moves

e where s, are slack variables associated with arc a.

~/

e Then, &, the current solution at iteration ¢, 1s an
extreme point of H,, and there exists a subset of
neighbors, N(lf:t) C N(l;t), which are all exclusively
made up of paths in

U;?EB“ ff‘?, vp S @f

e and thus are adjacent extreme points of H..

Neighborhoods and Moves

e To explore this neighborhood, we partition the 4,
solution into 1ts basic h; and nonbasic h, components.

~ cop
hB C U;?EE:‘]“ Ugf‘
~ cop
hN C U;?EE’:‘]“ C’gf‘

® A candidate pivot-move is then simply a pair of
variables (h,, h,,), h.,, € hyand h,,, € hy, on which a

m’

simplex pivot may be performed.

out

e The candidate list /is the set of all such pairs of
variables.

Neighborhoods and Moves

e The discrete neighborhood 1s defined relative to the
design variables and is used to modity drastically the
network configuration and to diversity the search.

e A discrete neighbor h € D(h) of h € H at iteration t is
the set of optimal paths 1in

cpp
U;'}E'{ﬂ‘ C’gt

e that corresponds to the network configuration y
obtained by “closing” a given number of network arcs
1n .

Tabu Search for Network Design

e The corresponding diversification move is thus a
complex sequence of operations that usually includes
several (primal and eventually dual) pivots.

e Several discrete neighborhoods may be defined (and
several may be used in the same tabu search
procedure) according to the number of arcs to be
closed.

e The criteria used to select these arcs and determine the
moment when diversification moves are to be
performed are fundamental design parameters of the
tabu search procedure.

3.2 Local Search

Local Search

T'he local search phase aims to explore the space of
he path flow variables according to the principles of
he revised simplex method with column generation.

I'wo auxiliary MCNF formulations are defined over
he constraint.

Local Search

e (1) The Linear component formulation:
Minimize z(h) = >, >, kiht

peP I

> hh=wr VYpE P,

lesy

> > e+ s,=u, VYa€d,

peP leL
VpE P, 1€ P,
Vae d,

Local Search

e | et o be the vector of dual variables associated with
first and second constraints

Local Search

e The Linearized formulation:

Minimize z(f) = >, >, kih
peP ledr
> hh=wr VYpE P,

lesy

> > net+s,=u, VYa€d,
peEP ey

hf=0 Vpe?P lePt,
= () Vae d,

Local Search

® Where
ki = 2,e O(ch +£./1,)

e Let o be the vector of dual variables associated with
first and second constraints

Local Search

e The local search phase steps are as follows:

e Step 0. Initialize short-term tabu lists;
— [: Set of candidates - current paths;

— Z,,,: Value of the best overall solution obtained to date;

o Zlocalzoo;Zprevzoo;gzo‘

Local Search

e Neighbor evaluation and move selection.

e Step 1. Repeat steps 2 to 7 until max_move
consecutive pivots (moves) have been executed with
no improvement in the value of Z,__ .

e Step 2. Let B identify the basis corresponding to the
current solution;
— Compute the values of the dual variables: aB = k;”

— Pivot in any slack variable with negative marginal cost.

e Step 3. Compute the reduced costsk,” for all nonbasic
paths.

Local Search

e Step 4. For each nonbasic path variable i (potential £,
variable):

— Determine the corresponding exiting (basic) path j
(potential £,,,) variable and associated value f of the
entering variable;

— Determine the corresponding modification (if any) to the
vector of design variables y and compute the associated
variation in the total fixed cost of the network A, J.(Z(y));

— Compute the value of the potential move as the variation in
the evaluation of z(h, y), the objective function of the
original network design problem:

AifZ) = k. B+ A; (Z(y))

Local Search

e Step 5. Identity (4, h,,) argmin{A,; (Z)}.
e Pivot-move
e Step 6. Move implementation.

— If the selected move is not tabu, implement it.

— If 1t 1s tabu, implement only if it improves Z,,,,

— Otherwise, select next best candidate move.

e Step 7. Establish and update tabu tenures;
— Update long-term memories;

— If improved, update Z, ., and, eventually, Z, , ..

Local Search

e Column generation

e Step 8.
-~ WZpur < Zyrey then 2, =27,y and g = 0;
— Else g =g + I and if g > max_col_gen EXIT.
e Step 9.
— Compute the values of the dual variables for the linearized
formulation:
aB = ki;

— Generate new paths and add them to /;
— Go to Step 1.

Tabu List

e Several approaches are possible to prevent the tabu
search procedure from cycling, such as:

— forbidding the reversal of the last n, pivots, might become
computationally expensive

— forbidding the last n, paths to have entered the basis to
leave 1t, might drive the procedure into a gridlock.

— forbidding a exiting variable that recently got out of the
basis to enter back into the basis (this 1s selected)

Tabu List

e The tabu tenure of each exiting variable is randomly
chosen 1n a [low_tab_mv, high_tab_mv] interval
according to a discrete uniform distribution.

Column Generation

e In a classical column generation scheme, the algorithm
proceeds to price out existing nonbasic variables and
then pivots until a local optimum 1s attained with
respect to these variables, 1.e. until all nonbasic
variables display positive reduced costs.

e Then, a new, “improving” variable 1s generated, and
the algorithm stops when this variable exhibits a
positive reduced cost.

e In this paper, authors also call upon column generation
only when a local optimum has been reached relative
to the paths already generated (1.e., presently in /).

Column Generation

e However, 1n the present setting, one cannot use
marginal costs to determine that no further
improvement is possible by using the existing paths.

e Therefore, local optimality 1s defined as no
improvement in the value of Z, ., for max_move
consecutive moves.

Column Generation

e A shortest path algorithm over the links of the
network 1s used to generate new paths.

e To capture the interplay between the fixed-costs and
capacities of the arcs, the reduced arc costs used by the
column generation subproblem correspond to the
linearized multicommodity capacitated network flow
problem with the surrogate arc costs:

C, = ¢ + fo/u, Va € sl, p € P.
e All arcs are available for the generation of new paths,
the dual variables associated with the capacity

constraints keeping the procedure away from saturated
arcs.

Column Generation

e Several strategies are possible relative to “how many”
and to “which” path variables to generate each time
the column generation phase 1s called.

— One could, for example, generate one or several paths (in
the latter case, one could generate a fixed or a variable
number of paths)

— One could do 1t for all or only for specific origins,
destinations, or origin-destination pairs.

— The choice of a strategy affects the efficiency of the search

— Authors chose to generate a fixed number (1dentified as
k_gen) of paths for all origin-destination pairs, and to
attempt to generate new paths for all O-D pairs each time
the procedure 1s executed.

Column Generation

e When several paths have to be generated for an O-D
pair, we want to obtain paths that are as dissimilar as
possible, without having to implement a time-
consuming procedure.

e Our approach iteratively starts from the successors of
the origin (other than the one on the shortest reduced
cost path) and computes the shortest marginal cost
path from each of these nodes to the destination.

e If all such successors are used and still the required
number of paths has not been generated, one proceeds
to the successor node on the initial shortest path and
applies the same procedure.

Column Generation

e In all cases, the path, or paths, with the lowest reduced
cost(s) 1s (are) then added to the set of paths /.

e Note that, since this 1s not a classical simplex case
where only variables with negative reduced cost are

generated, we are not guaranteed that a newly
generated path 1s not already in /.

Column Generation

® Column Generation Cycle

A sequence of local neighborhood explorations (by
pivoting) followed by a column generation phase 1s called a
column generation cycle.

Local search 1s terminated when no improvement to the
current local best solution 1s obtained after a number of
consecutive column generation cycles.

The method then either stops or proceeds to diversify the
search.

The parameter max_col_gen controls the termination of the
local search procedure.

3.3 The Initialization Phase

The Initialization Phase

e Initially, a shortest path 1s generated for each demand
using the surrogate arc costs.

e Demand 1s then sequentially loaded on these paths, the
overtflow being assigned to artificial paths with
arbitrarily high costs.

e Starting from this principle, two basic 1nitialization
procedures may be devised.

The Initialization Phase

e The first method

— The first starts with all arcs open and performs simplex

pivots without the tabu mechanisms until a first feasible
solution 1s obtained to the PCMND.

— This method 1s thus equivalent to a classical Simplex Phase
L.

® The second method

— The second mechanism adopts the same Phase |
philosophy, but makes use of the local search routine when
looking for the first feasible solution, thus initiating the
tabu logic from the very start.

3.4 Diversification

Diversification

e Once the completion of a local search sequence 1s
signaled by max_col_gen consecutive column
generation phases without improvement, the algorithm
proceeds to a diversification phase.

e This step aims to take the search out of an apparent
local optimum and toward some promising region.

Diversification

e The diversification strategy implemented 1s based on
the observation that when using column generation, a
number of “good” arcs (with respect to capacity or to
fixed-cost-to-capacity ratio) appear again and again in
the paths used to satisfy demand.

Diversification

e Two simple long-term frequency memory structures
have been implemented

— The first records for how many iterations an arc has been 1n
the basis, that 1s for how long it belonged to at least one
basic path.

— The second frequency vector records how often an arc was
part of an entering path variable.
e In both cases, one attempts to capture a persistence
type of attribute of the design arcs, 1n order better to
move away from current solutions.

Diversification

e The experimental results have confirmed that the first
approach to provide a more effective measure since it
also captures a consistency attribute (for how long an
arc was present “in” the basis) and somewhat filters
out the arcs that are prone to get in and out of the basis
in rapid succession.

Diversification

e Arcs that score high in any one of these two memories
will tend to belong to the group of arcs often used in
the solutions already explored.

e Therefore, a solution that does not use some of them
will be 1n a different region than the ones already
visited.

e Hence, to diversity, one selects a small number of
often-used arcs and closes them.

e This 1s done via a procedure (similar to dual simplex
pivots) that removes from the basis any path that
contains at least one of the closed arcs.

Diversification

e This may result in an infeasible solution with flows on
artificial paths; we will try to regain feasibility during
the following pi1voting operations.

e During the tabu tenure of these arcs, no paths that
contain them are allowed to enter the basis unless, of
course, the aspiration criterion overrides the tabu
status.

e Furthermore, the closed arcs are not available during
the column generation phases.

e These arcs and paths are tabu for tabu_cycle column
generation cycles.

4. Calibration of the Tabu Search
Metaheuristic

Calibration of the Tabu Search Metaheuristic

e The calibration process aims to determine values, or
value ranges, for the search parameters such that the
metaheuristic performs well over a broad range of
problem types.

e A common pitfall of metaheuristic calibration phases
1s to tune too finely the procedure to a particular set of
problems (or even to report performance results on the
same set of problems used for calibration).

Calibration of the Tabu Search Metaheuristic

e To avoid this problem, we look for a set of parameters
that 1s robust for a small set of representative
problems, and then use the resulting parameter settings
to experiment with two different sets of problem
instances.

4.1 Local Search Calibration

Local Search Calibration

e The initial experiments did show that tight capacities
and dominant fixed-costs make problems more
difficult to solve.

e Therefore, for the calibration phase, we selected 10
problems (out of the initial 18) that display these
attributes and cover the entire range of network sizes:
from 100 to 700 design arcs and from 10 to 400

commodities.

e We were also able to fix the value of the max_move
parameter to twice the value of the maximum tabu
tenure high_tab_mv.

Local Search Calibration

e We tested the following combinations of parameter
values, without activating the diversification feature,
and fixing max_col_gen at 10 (which allows for a
long local search phase):

— Tabu tenure interval for exiting path variables
[low_tab_mv, high_tab_mv]: [5,10], and [10,20];

— The type of 1nitial solution: simplex Phase I without tabu
mechanisms (YES) or no independent Phase I and the tabu
mechanisms of the local search start from the possibly
infeasible 1nitial flow allocation (NO);

— The number of paths generated for each commodity (origin-

destination pair) during the column generation cycle: k_gen
=1, 2,3, and 5.

Local Search Calibration

e The success of each parameter combination was
measured by the number of first, second, and third best
solutions it found over the set of 160 runs (10 problem
instances and 16 parameter combinations).

Local Search Calibration

e Individual Parameter Performance

Parameter 1st Place 2nd Place 3rd Place

Initialization proced ure

YES 5 4 3
NO 7 11 7
low_tab_muo, high_tab_mv, max_move
5,10,20 6 6 4
10,20,40 9 6 6
k_gen

W =
(o8]

U o o =
H= H=
o1 U1 M9
M B = U1

Local Search Calibration

e Table I allows us to gain some insight into the
behavior induced by each parameter:

— Activation of the tabu logic (NO option) from the very
beginning of the initialization phase appears best.

— A tabu tenure randomly chosen from a [10,20] interval
performs marginally better than when the [35,10] 1s used.

— Generating 3 or 5 paths appears to be preferable to the other
two options. However, since the computation time of this
phase increases with the number of generated paths, we
prefer to generate only 3 paths for each commodity.

Local Search Calibration

e To make the final decision, we weighted each first,
second, and third places with three, two, and one
points, respectively.

e The resulting relative performance of the various
combinations of parameters 1s displayed in:

Setting k_gen=1 k_gen=2 k_gen=3 k_gen=>5
10,20,40,Yes 3 0 1 12
10,20,40,No 6 8 12 9
5,10,20,Yes 6 3 3 1
5,10,20,No 8 3 8 2

Local Search Calibration

e One combination stands out and was used 1n all the
tests that followed: 10,20,40,No,k_gen = 3, that 1s,
— no separate initialization phase,
— tabu tenure selected from a [10,20] 1terations interval,

— 40 consecutive unimproving moves to decide that a current
local best solution is a local optimum with respect to the
existing paths, and

— 3 paths generated for each commodity during a column
generation phase.

Local Search Calibration

e In the present case, the combination
10,20,40,Yes,k_gen = 5 scored as high as the one we
selected (but required the generation of five paths for
each product), while several others are not far behind.

e The selected set of parameters performs very
satisfactorily over the range of test problems:

— the average gap between the solutions obtained by using the
selected set of parameters and the best solutions 1s 1.2%,

— the maximum observed difference 1s of the order of 4%.

4.2 Calibration of Diversification

Calibration of Diversification

e The diversification phase requires that two more
parameters be considered and jointly fixed:

— max_col_gen, which controls when the local search
terminates and when a diversification phase is 1nitiated,

— tabu_cycle, the tabu tenure of the arcs closed by the
diversification move.

e After a number of tests, we decided to use
max_col_gen = 3 and tabu_cycle = 2.

Calibration of Diversification

e The diversification mechanisms are based on the 1dea
of forcing the search in a direction where some of the
arcs currently used heavily are not part of the solution

e we tried to close an important number of arcs of the
order of 1% and 5%.

5. Experimentation and Analyses

Experimentation and Analyses

e The main objectives of the experimentation phase are:

— (1) to characterize the behavior of the search algorithm
where pivoting and column generation are driven according
to tabu search principles

— (11) to gain insight into the performance of the method
relative to three main problem instance characteristics:
dimensions, relative importance of fixed-costs compared to
variable costs, and the degree of capacity tightness

— (111) to establish how well the proposed algorithm solves the
type of problems of interest here

Experimentation and Analyses

e Test Problems

Two sets of problems have been generated.

These are general transshipment networks, with no parallel
arcs and one commodity per origin-destination pair.

On each arc, the same unit cost 1s used for all commodities.

Problems differ in the number of nodes, arcs (all of which
are design arcs), and commodities.

Several instances have been generated for each problem
dimension by varying the relative importance of fixed
versus variable costs and the capacity of the network
compared to the total demand.

Experimentation and Analyses

e The tabu search metaheuristic 1s programmed 1n
FORTRANY7.

e The experiments reported have been performed on a
SUN UltraSparc-II workstation (two CPUs, but only
one allocated to our experiments), with a 296 MHz
clock, 2 MB of cache memory, and 2 GB of RAM.

Performance Analysis

e To analyze the behavior and performance of the tabu
search heuristic, we compare 1ts output to the optimal
solution obtained by using the branch-and-bound
algorithm of CPLEX version 4.0, with primal
simplex-based bounding

e We also compare the tabu search to two other
heuristics.

Performance Analysis

e The first heuristic method (GREEDY)

— accepts only improving (pivot) moves in Step S of local
search.

— This corresponds to a classical greedy descent procedure.

— Contrasted to the results of the tabu search method, it acts
as a measure of the impact on the solution quality of the
imposition of a metaheuristic (tabu search) logic over the
greedy search.

Performance Analysis

e The second heuristic method (UBR)

— The upper bound heuristic makes use of the information
yielded by the lower bounding procedure and combines
projection and resource decomposition methods

Performance Analysis

e Computational Results

PROB GREEDY UBR OPT TABU GAP
20,230,40,V,L 431179 431701 423848 425046 0.28%
(9.46) (71.29)
20,230,40,F, T 43e+10 404638 371475 371816 0.09%
(82.27) (90.28)
20,230,40,F,T 3.6e+09 679539 643036 644172 0.17%
(1639.34) (121.79)
20,230,200,V,L 146464 164770 94752 122592 29.38%
(t) (504.50)
20,230,200,F,L 232817 299590 139888 188590 34.82%
(t) (491.63)
20,230,200,V,T 136978 204486 98051 118057 20.40%
(t) (548.36)
20,230,200,F,T 6.8e+06 077365 137796 182829 32.68%
(t) (889.69)
20,300,40,V,L 431839 447235 429398 429912 0.12%
(1.25) (71.05)
20,300,40,F,L 624978 734217.1 586077 589190 0.53%
(188.53) (113.44)
20,300,40,V,T 3.2e+10 481738 464509 464509 0%
(176.91) (145.33)
20,300,40,F,T 1.2e+11 650874 604198 606364 0.35%

Performance Analysis

20,300,200,V,L 104195 168510 75460 88398 17.15%
(t) (982.21)
20,300,200,F,L 205254 300507 116810 151317 29.54%
(t) (1316.75)
20,300,200,V,T 101772 162044 75090 82724 10.17%
(t) (938.29)
20,300,200,F,T 2.5e+08 302376 112650 135593 0.40%
(t) (1065.88)
25,100,10,V,L 14763 14828 14712 14712 0%
(0.12) (5.60)
25,100,10,F,L 17073 20182 14941 15889 6.35%
(91.47) (8.37)
25,100,10,F, T 1.2e+07 57314 49899 51654 3.52%
(441.86) (17.10)
25,100,30,V,T 6.1e+09 382923 365272 365272 0%
(20.35) (16.57)
25,100,30,F,L 6.9e+06 48782 37055 38804 4.72%
(15274.21) (33.01)
25,100,30,F, T 3.0e+08 99896 85530 86445 1.07%

(2283.71) (71.84)

Performance Analysis

e Problems are 1dentified with a quintuplet that indicates
— (1) the number of nodes
— (11) the number of arcs
— (111) the number of commodities
— (1v) 1f fixed-costs are relatively high (F) or low (V)
compared to variable costs

— () 1f the problem 1s tightly (T) or somewhat loosely (L)
capacitated.

Performance Analysis

e Table information:

— the GREEDY and UBR columns display the value of the
best feasible solution obtained by the greedy descent and
the resource-decomposition heuristic, respectively.

— The OPT column corresponds to the branch-and-bound
algorithm of CPLEX version 4.0, with primal simplex-
based bounding.

— In the TABU column, the results of tabu search methods
with tuned parameters are depicted

Performance Analysis

e Table information:

X indicates that the procedure failed to find a feasible
solution.

The figures in parentheses in the OPT and TABU columns
represent total computation times, in CPU seconds;

t indicates that the procedure stopped due to a time limit
condition.

When branch-and-bound has i1dentified a feasible solution,
the GAP column displays the optimality gap of the tabu
procedure relative to it.

A limit of 6 hours (21000 CPU seconds) computation time
was imposed on the branch-and-bound.

Experimentation and Analyses

PROB GREEDY UBR OPT TABU GAP
30,520,100,V,L 4.6e+08 67699 54104 56426 4.29%,
(t) (995.64)
30,520,100,F,L 1.0e+09 221188 96450 104117 7.94%
(t) (939.24)
30,520,100,V,T 2.6+409 75757 52258 53288 1.97%
(t) (1218.52)
30,520,100,F,T 115244 185746 99870 107894 8.03%
(t) (670.29)
30,520,400,V,L 1.9e+10 226070 113021 125831 11.33%
(t) (5789.27)
30,520,400,F,L 3.0+408 389636 X 177409 —
(t) (6406.62)
30,520,400,V, T 3.1e+11 X X 125518 —
(t) (6522.23)
30,520,400,F,T 2.0e+10 336248 X 174526 —
(t) (8415.24)
30,700,100,V,L 51962 59411 47603 48984 2.90%
(1775.69) (1265.11)
30,700,100,F,L 73892 114603 60559 65356 7.92%
(t) (1479.59)
30,700,100,V,T 2.8e+09 60918 46564 47083 1.12%
(t) (2426.02)
30,700,100,F,T 64003 97023 55709 58804 5.56%
(t) (1735.72)

Experimentation and Analyses

30,700,400,V,L
30,700,400,F,L
30,700,400V, T
30,700,400,F, T
100,400,10,V,L
100,400,10,F,L
100,400,10,F, T
100,400,30,V, T
100,400,30,F,L

100,400,30,F, T

1.3e+10

1.8e+10

2.0e+10

212e+10

6.4e+07

28279

2.4e+07

9.0e+09

63000

1.7e+09

215014

387566

202740

375586

30273

45188

109244

407085

110401

226054

X
(t)
X
(t)
X
(t)
X
(t)
28433
(775.40)
25166
(t)
71439
(t)
385102
(383.77)
52368
(t)
145083

(t)

110000
(12636.20)
165484
(11367.70)
103768
(15879.50)
150919
(11660.40)
28485
(32.66)
24912
(33.00)
71128
(81.23)
385185
(277.50)
58773
(100.16)
149282
(215.71)

0.18%

—1.00%

—0.44%

0.02%

12.23%

2.89%

Experimentation and Analyses

e Second set of problems

— A second set of problems has been generated, therefore, in
order to study these relationships further.

— The problem instances in this set, identified with the letter
R, have been designed to facilitate the evaluation of the
impact on performance of one problem characteristic only.

Experimentation and Analyses

e Distribution of Relative Gaps

Prob. Set X Opt Imp (0%, 1%] (1%, 5%] (5%, 10%] (10%, 20%] >20%
C 7 3 2 9 8 5 4 5
R 15 16 14 19 52 24 8 5
All 22 19 16 28 60 29 12 10

Column X : for 22 problem instances, branch-and-bound did not
find a feasible solution

Column Opt : the tabu search heuristic identified 19 optimum
solutions

Column Imp : the tabu search heuristic improved the branch-
and-bound feasible solution (no optimum known) for 16 other
problems.

The next columns corresponds to the (0%, 1%] gap interval, and
SO on.

Experimentation and Analyses

e Aggregate Relative Gaps

Prob. Improvement Strict Opt
Set Gap Gap
C 0.72% (n = 2) 8.97% (n = 31)
R 8.95% (n = 14) 5.45% (n = 108)
All 6.56% (n = 16) 6.24% (n = 139)

— The figures in the Improvement Gap column correspond
to the 16 problems for which the tabu search improved the
branch-and-bound feasible solution.

— For the 139 other problem instances, the tabu search
method achieved an average gap relative to the branch-and-
bound solution of 6.24% (the Strict Opt Gap column).

The End

