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1. Introduction1. Introduction



Introduction

� The goal of the paper (Crainic et al. (2000) )is to 

present an efficient procedure to find good feasible 

solutions to fixed-charge, capacitated, 

multicommodity network design problem with linear 

costs (CMND).



Introduction

� The contribution of this paper is two-fold. 

– First, it provides an efficient heuristic for a difficult 

network optimization problem. 

– Second, it expands our understanding of the tabu search 

metaheuristic by studying the relationships among the tabu 

search framework, simplex pivoting, and column search framework, simplex pivoting, and column 

generation.



2. Formulation and Algorithmic Ideas2. Formulation and Algorithmic Ideas



Formulations

� G = (N, A) : the graph underlying the network to be 

designed,  

� N : the set of nodes,  

� A = {a = (i, j) | i œ N, j œ N } the set of arcs (for the 

sake of simplicity, we assume all arcs to be directed 

design arcs)design arcs)

� P : the set of commodities to be distributed. 

� p œ P a commodity to be the flow between an origin 

node rp œ N and a destination node sp œN

� wp : the corresponding demand is denoted wp



Formulations

� : the unit cost of moving commodity p through the

arc a  

� fa : the fixed-cost of including the arc in the design of 

the network

� ua : the total capacity of the arc. 

a

pc

a

� Lp : all paths from rp to sp in G.

� = 1 if arc a is in the lth path for commodity p, and 

is 0 otherwise, 

� : the variable (or per-unit) cost of path l œ Lp
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Formulations

� ya : the decision variables concern the selection of arcs 

for the final design of the network, ya = 1 if arc a is 

included (opened) and 0, otherwise 

� : the flow of commodity p on path l

� : the arc flows, can be obtained by
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Formulations

� The general form of the path-based formulation of the 

fixed-cost, capacitated multicommodity network 

design problem (PCMND) may then be written as:



Formulations



Algorithmic Ideas

� for any set of values ỹ of the design variables y, the 

path-based formulation of the CMND becomes a 

capacitated multicommodity minimum cost network 

flow (MCNF) problem in path flow variables



Algorithmic Ideas

� H(ỹ) : the set of all feasible path flows in PCMND for 

a given ỹ. 

� H(ỹ) : is also the set of all feasible path flows for the 

corresponding MCNF, for a given ỹ.

� an optimal solution to MCNF problem can always be 

found at an extreme point of H(ỹ), assuming H(ỹ) # «. found at an extreme point of H(ỹ), assuming H(ỹ) # «. 

� H̃(ỹ) : the set of extreme points. 



Algorithmic Ideas

� Consider now H = H(ỹ = 1)

� the set of feasible path flows when all the design arcs 

are open (i.e., ỹa = 1, a œ A), and its associated set of 

extreme points H̃.  

� H is defined by the set of constraints:



Algorithmic Ideas

� it is verified that 

� where y is the set of all possible design variable 

vectors. vectors. 

� for any given path flow pattern h̃ œ H̃, a design with 

minimal cost relative to the path flows, denoted y(h̃), 

can be obtained by



Algorithmic Ideas

� Where       stands for the set of paths for commodity p

that use the design arc a , 

� An optimal solution to the CMND can therefore be 

found by complete or implicit enumeration of the 

elements of H̃.
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Algorithmic Ideas

� A solution procedure for the CMND based on 

enumerating the elements of H̃ is likely to be 

extremely time-consuming

� Alternatively, the previous property may be used to 

define local search heuristics for the CMND: the 

adjacency relationships in H̃ define a natural adjacency relationships in H̃ define a natural 

neighborhood structure, while the pivoting rules of the 

simplex method provide an efficient way to reach the 

neighbors of any given solution. 

� Thus, the fundamental idea of the approach we 

propose for solving the CMND is to use a tabu search 

method to explore the solution space H̃, 



Algorithmic Ideas

� In the proposed method the revised simplex algorithm 

offers the framework within which the neighborhood 

is constructed and explored, and moves are evaluated, 

selected, and implemented. 



Algorithmic Ideas

� The algorithm exhibits 

– the main structure of the primal simplex method with basis 

partitioning and 

– column generation.



3. Tabu Search for Network Design3. Tabu Search for Network Design



Tabu Search for Network Design

� TS method:



Tabu Search for Network Design

� max_div : a predefined number of diversification 

phases 

� Zbest : the best solution encountered during the search 

� Computations stop once a predefined number of 

diversification phases (max_div) have been performed.



The Solution Space

� the solution space we want to explore is the set 

– of the extreme points of H, defined over the set of all possible network 

configurations (design variable vectors) y by equations:



3.1 Neighborhoods and Moves3.1 Neighborhoods and Moves



Neighborhoods and Moves

� Two neighborhoods are defined: 

– a continuous neighborhood for the local search phase

– a discrete neighborhood used to diversify the search



Neighborhoods and Moves

� The continuous (or local) neighborhood, N(h̃), of any 

element h̃ œ H̃ , is defined as 

– the subset of all extreme points of  H̃ adjacent to h̃, that is, 

all extreme points that can be reached from h̃ by one 

simplex pivot. 

– Consequently, in linear programming terms, a local move– Consequently, in linear programming terms, a local move

corresponds to a transition from one basis of the system to 

an adjacent one: a basic path thus becomes unbasic, while a 

previously unbasic path takes its place in the basis.



Neighborhoods and Moves

� Generally, not all the path variables are available at 

each iteration. 

� Consider the sets     = {available paths for commodity 

p at iteration t}, for all p œ P , and Ht the 

corresponding polyhedron defined by:
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Neighborhoods and Moves

� where sa are slack variables associated with arc a. 

� Then, h̃t, the current solution at iteration t, is an 

extreme point of Ht, and there exists a subset of 

neighbors, Nt(h̃t) Œ N(h̃t), which are all exclusively 

made up of paths in

� and thus are adjacent extreme points of Ht.



Neighborhoods and Moves

� To explore this neighborhood, we partition the ht

solution into its basic h̃B and nonbasic h̃N components.

� A candidate pivot-move is then simply a pair of 

variables (hin, hout), hin œ h̃N and hout œ h̃B, on which a 

simplex pivot may be performed. 

� The candidate list llll is the set of all such pairs of 

variables. 



Neighborhoods and Moves

� The discrete neighborhood is defined relative to the 

design variables and is used to modify drastically the 

network configuration and to diversify the search. 

� A discrete neighbor ĥ œ D(h̃) of h̃ œ H̃ at iteration t is 

the set of optimal paths in 

� that corresponds to the network configuration ŷ 
obtained by “closing” a given number of network arcs 

in ỹ. 



Tabu Search for Network Design

� The corresponding diversification move is thus a 

complex sequence of operations that usually includes 

several (primal and eventually dual) pivots. 

� Several discrete neighborhoods may be defined (and 

several may be used in the same tabu search 

procedure) according to the number of arcs to be procedure) according to the number of arcs to be 

closed. 

� The criteria used to select these arcs and determine the 

moment when diversification moves are to be 

performed are fundamental design parameters of the 

tabu search procedure.



3.2 Local Search3.2 Local Search



Local Search

� The local search phase aims to explore the space of 

the path flow variables according to the principles of 

the revised simplex method with column generation. 

� Two auxiliary MCNF formulations are defined over 

the constraint.



Local Search

� (1) The Linear component formulation:



Local Search

� Let α be the vector of dual variables associated with 

first and second constraints 



Local Search

� The Linearized formulation:



Local Search

� Where

� Let α̃ be the vector of dual variables associated with 

first and second constraints 



Local Search

� The local search phase steps are as follows:

� Step 0. Initialize short-term tabu lists;

– l : Set of candidates - current paths;

– Zbest : Value of the best overall solution obtained to date;

– Zlocal = ∞ ; Zprev = ∞ ; g = 0.



Local Search

� Neighbor evaluation and move selection.

� Step 1. Repeat steps 2 to 7 until max_move

consecutive pivots (moves) have been executed with 

no improvement in the value of Zlocal.

� Step 2. Let B identify the basis corresponding to the 

current solution;current solution;

– Compute the values of the dual variables: αB =

– Pivot in any slack variable with negative marginal cost.

� Step 3. Compute the reduced costs      for all nonbasic

paths.
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Local Search

� Step 4. For each nonbasic path variable i (potential hin

variable):

– Determine the corresponding exiting (basic) path j 

(potential hout) variable and associated value β of the 

entering variable;

– Determine the corresponding modification (if any) to the – Determine the corresponding modification (if any) to the 

vector of design variables y and compute the associated 

variation in the total fixed cost of the network ∆i,j(Z(y));

– Compute the value of the potential move as the variation in 

the evaluation of z(h, y), the objective function of the 

original network design problem: 

∆i,j(Z) = k̄i β + ∆i,j(Z(y))



Local Search

� Step 5. Identify (hin, hout) argmin{∆i,j(Z)}.

� Pivot-move

� Step 6. Move implementation. 

– If the selected move is not tabu, implement it.

– If it is tabu, implement only if it improves Zbest;– If it is tabu, implement only if it improves Zbest;

– Otherwise, select next best candidate move.

� Step 7. Establish and update tabu tenures;

– Update long-term memories;

– If improved, update Zlocal and, eventually, Zbest.



Local Search

� Column generation

� Step 8.

– If Zlocal <  Zprev then Zprev = Zlocal and g = 0;

– Else g = g + 1 and if g > max_col_gen EXIT.

� Step 9.Step 9.

– Compute the values of the dual variables for the linearized

formulation:

– Generate new paths and add them to  l;

– Go to Step 1.



Tabu List

� Several approaches are possible to prevent the tabu 

search procedure from cycling, such as:

– forbidding the reversal of the last np pivots, might become 

computationally expensive

– forbidding the last nv paths to have entered the basis to 

leave it, might drive the procedure into a gridlock. leave it, might drive the procedure into a gridlock. 

– forbidding a exiting variable that recently got out of the 

basis to enter back into the basis (this is selected)



Tabu List

� The tabu tenure of each exiting variable is randomly 

chosen in a [low_tab_mv, high_tab_mv] interval 

according to a discrete uniform distribution.



Column Generation

� In a classical column generation scheme, the algorithm 

proceeds to price out existing nonbasic variables and 

then pivots until a local optimum is attained with 

respect to these variables, i.e. until all nonbasic

variables display positive reduced costs. 

� Then, a new, “improving” variable is generated, and � Then, a new, “improving” variable is generated, and 

the algorithm stops when this variable exhibits a 

positive reduced cost. 

� In this paper, authors also call upon column generation 

only when a local optimum has been reached relative 

to the paths already generated (i.e., presently in l). 



Column Generation

� However, in the present setting, one cannot use 

marginal costs to determine that no further 

improvement is possible by using the existing paths. 

� Therefore, local optimality is defined as no 

improvement in the value of Zlocal for max_move

consecutive moves.consecutive moves.



Column Generation

� A shortest path algorithm over the links of the 

network is used to generate new paths. 

� To capture the interplay between the fixed-costs and 

capacities of the arcs, the reduced arc costs used by the 

column generation subproblem correspond to the 

linearized multicommodity capacitated network flow linearized multicommodity capacitated network flow 

problem with the surrogate arc costs:

� All arcs are available for the generation of new paths, 

the dual variables associated with the capacity 

constraints keeping the procedure away from saturated 

arcs.



Column Generation

� Several strategies are possible relative to “how many” 

and to “which” path variables to generate each time 

the column generation phase is called.

– One could, for example, generate one or several paths (in 

the latter case, one could generate a fixed or a variable 

number of paths)number of paths)

– One could do it for all or only for specific origins, 

destinations, or origin-destination pairs. 

– The choice of a strategy affects the efficiency of the search

– Authors chose to generate a fixed number (identified as 

k_gen) of paths for all origin-destination pairs, and to 

attempt to generate new paths for all O-D pairs each time 

the procedure is executed.



Column Generation

� When several paths have to be generated for an O-D 

pair, we want to obtain paths that are as dissimilar as 

possible, without having to implement a time-

consuming procedure.

� Our approach iteratively starts from the successors of 

the origin (other than the one on the shortest reduced the origin (other than the one on the shortest reduced 

cost path) and computes the shortest marginal cost 

path from each of these nodes to the destination. 

� If all such successors are used and still the required 

number of paths has not been generated, one proceeds 

to the successor node on the initial shortest path and 

applies the same procedure. 



Column Generation

� In all cases, the path, or paths, with the lowest reduced 

cost(s) is (are) then added to the set of paths l. 

� Note that, since this is not a classical simplex case 

where only variables with negative reduced cost are 

generated, we are not guaranteed that a newly 

generated path is not already in l.generated path is not already in l.



Column Generation

� Column Generation Cycle

– A sequence of local neighborhood explorations (by 

pivoting) followed by a column generation phase is called a 

column generation cycle. 

– Local search is terminated when no improvement to the 

current local best solution is obtained after a number of current local best solution is obtained after a number of 

consecutive column generation cycles. 

– The method then either stops or proceeds to diversify the 

search. 

– The parameter max_col_gen controls the termination of the 

local search procedure.



3.3 The Initialization Phase3.3 The Initialization Phase



The Initialization Phase

� Initially, a shortest path is generated for each demand 

using the surrogate arc costs. 

� Demand is then sequentially loaded on these paths, the 

overflow being assigned to artificial paths with 

arbitrarily high costs. 

Starting from this principle, two basic initialization � Starting from this principle, two basic initialization 

procedures may be devised. 



The Initialization Phase

� The first method

– The first starts with all arcs open and performs simplex 

pivots without the tabu mechanisms until a first feasible 

solution is obtained to the PCMND. 

– This method is thus equivalent to a classical Simplex Phase 

I. I. 

� The second method

– The second mechanism adopts the same Phase I 

philosophy, but makes use of the local search routine when 

looking for the first feasible solution, thus initiating the 

tabu logic from the very start.



3.4 Diversification3.4 Diversification



Diversification

� Once the completion of a local search sequence is 

signaled by max_col_gen consecutive column 

generation phases without improvement, the algorithm 

proceeds to a diversification phase. 

� This step aims to take the search out of an apparent 

local optimum and toward some promising region.local optimum and toward some promising region.



Diversification

� The diversification strategy implemented is based on 

the observation that when using column generation, a 

number of “good” arcs (with respect to capacity or to 

fixed-cost-to-capacity ratio) appear again and again in 

the paths used to satisfy demand.



Diversification

� Two simple long-term frequency memory structures 

have been implemented

– The first records for how many iterations an arc has been in 

the basis, that is for how long it belonged to at least one 

basic path.

– The second frequency vector records how often an arc was – The second frequency vector records how often an arc was 

part of an entering path variable. 

� In both cases, one attempts to capture a persistence 

type of attribute of the design arcs, in order better to 

move away from current solutions. 



Diversification

� The experimental results have confirmed that the first 

approach to provide a more effective measure since it 

also captures a consistency attribute (for how long an 

arc was present “in” the basis) and somewhat filters 

out the arcs that are prone to get in and out of the basis 

in rapid succession. in rapid succession. 



Diversification

� Arcs that score high in any one of these two memories 

will tend to belong to the group of arcs often used in 

the solutions already explored. 

� Therefore, a solution that does not use some of them 

will be in a different region than the ones already 

visited. visited. 

� Hence, to diversify, one selects a small number of 

often-used arcs and closes them. 

� This is done via a procedure (similar to dual simplex 

pivots) that removes from the basis any path that 

contains at least one of the closed arcs. 



Diversification

� This may result in an infeasible solution with flows on 

artificial paths; we will try to regain feasibility during 

the following pivoting operations.

� During the tabu tenure of these arcs, no paths that 

contain them are allowed to enter the basis unless, of 

course, the aspiration criterion overrides the tabu course, the aspiration criterion overrides the tabu 

status. 

� Furthermore, the closed arcs are not available during 

the column generation phases. 

� These arcs and paths are tabu for tabu_cycle column 

generation cycles.



4. Calibration of the Tabu Search 
MetaheuristicMetaheuristic



Calibration of the Tabu Search Metaheuristic

� The calibration process aims to determine values, or 

value ranges, for the search parameters such that the 

metaheuristic performs well over a broad range of 

problem types. 

� A common pitfall of metaheuristic calibration phases 

is to tune too finely the procedure to a particular set of is to tune too finely the procedure to a particular set of 

problems (or even to report performance results on the 

same set of problems used for calibration). 



Calibration of the Tabu Search Metaheuristic

� To avoid this problem, we look for a set of parameters 

that is robust for a small set of representative 

problems, and then use the resulting parameter settings 

to experiment with two different sets of problem 

instances. 



4.1 Local Search Calibration4.1 Local Search Calibration



Local Search Calibration

� The initial experiments did show that tight capacities 

and dominant fixed-costs make problems more 

difficult to solve. 

� Therefore, for the calibration phase, we selected 10 

problems (out of the initial 18) that display these 

attributes and cover the entire range of network sizes: attributes and cover the entire range of network sizes: 

from 100 to 700 design arcs and from 10 to 400 

commodities. 

� We were also able to fix the value of the max_move

parameter to twice the value of the maximum tabu 

tenure high_tab_mv.



Local Search Calibration

� We tested the following combinations of parameter 

values, without activating the diversification feature, 

and fixing max_col_gen at 10 (which allows for a 

long local search phase):

– Tabu tenure interval for exiting path variables 

[low_tab_mv, high_tab_mv]: [5,10], and [10,20]; [low_tab_mv, high_tab_mv]: [5,10], and [10,20]; 

– The type of initial solution: simplex Phase I without tabu 

mechanisms (YES) or no independent Phase I and the tabu 

mechanisms of the local search start from the possibly 

infeasible initial flow allocation (NO);

– The number of paths generated for each commodity (origin-

destination pair) during the column generation cycle: k_gen

= 1, 2, 3, and 5.



Local Search Calibration

� The success of each parameter combination was 

measured by the number of first, second, and third best 

solutions it found over the set of 160 runs (10 problem 

instances and 16 parameter combinations).



Local Search Calibration

� Individual Parameter Performance



Local Search Calibration

� Table I allows us to gain some insight into the 

behavior induced by each parameter:

– Activation of the tabu logic (NO option) from the very 

beginning of the initialization phase appears best.

– A tabu tenure randomly chosen from a [10,20] interval 

performs marginally better than when the [5,10] is used.performs marginally better than when the [5,10] is used.

– Generating 3 or 5 paths appears to be preferable to the other 

two options. However, since the computation time of this 

phase increases with the number of generated paths, we 

prefer to generate only 3 paths for each commodity.



Local Search Calibration

� To make the final decision, we weighted each first, 

second, and third places with three, two, and one 

points, respectively.

� The resulting relative performance of the various 

combinations of parameters is displayed in:



Local Search Calibration

� One combination stands out and was used in all the 

tests that followed: 10,20,40,No,k_gen = 3, that is, 

– no separate initialization phase, 

– tabu tenure selected from a [10,20] iterations interval, 

– 40 consecutive unimproving moves to decide that a current 

local best solution is a local optimum with respect to the local best solution is a local optimum with respect to the 

existing paths, and 

– 3 paths generated for each commodity during a column 

generation phase.



Local Search Calibration

� In the present case, the combination 

10,20,40,Yes,k_gen = 5 scored as high as the one we 

selected (but required the generation of five paths for 

each product), while several others are not far behind.

� The selected set of parameters performs very 

satisfactorily over the range of test problems: satisfactorily over the range of test problems: 

– the average gap between the solutions obtained by using the 

selected set of parameters and the best solutions is 1.2%, 

– the maximum observed difference is of the order of 4%. 



4.2 Calibration of Diversification4.2 Calibration of Diversification



Calibration of Diversification

� The diversification phase requires that two more 

parameters be considered and jointly fixed: 

– max_col_gen, which controls when the local search 

terminates and when a diversification phase is initiated, 

– tabu_cycle, the tabu tenure of the arcs closed by the 

diversification move. diversification move. 

� After a number of tests, we decided to use 

max_col_gen = 3 and tabu_cycle = 2.



Calibration of Diversification

� The diversification mechanisms are based on the idea 

of forcing the search in a direction where some of the 

arcs currently used heavily are not part of the solution

� we tried to close an important number of arcs of the 

order of 1% and 5%.



5. Experimentation and Analyses5. Experimentation and Analyses



Experimentation and Analyses

� The main objectives of the experimentation phase are: 

– (i) to characterize the behavior of the search algorithm 

where pivoting and column generation are driven according 

to tabu search principles

– (ii) to gain insight into the performance of the method 

relative to three main problem instance characteristics: relative to three main problem instance characteristics: 

dimensions, relative importance of fixed-costs compared to 

variable costs, and the degree of capacity tightness

– (iii) to establish how well the proposed algorithm solves the 

type of problems of interest here



Experimentation and Analyses

� Test Problems

– Two sets of problems have been generated. 

– These are general transshipment networks, with no parallel 

arcs and one commodity per origin-destination pair. 

– On each arc, the same unit cost is used for all commodities. 

– Problems differ in the number of nodes, arcs (all of which – Problems differ in the number of nodes, arcs (all of which 

are design arcs), and commodities. 

– Several instances have been generated for each problem 

dimension by varying the relative importance of fixed 

versus variable costs and the capacity of the network 

compared to the total demand. 



Experimentation and Analyses

� The tabu search metaheuristic is programmed in 

FORTRAN77.

� The experiments reported have been performed on a 

SUN UltraSparc-II workstation (two CPUs, but only 

one allocated to our experiments), with a 296 MHz 

clock, 2 MB of cache memory, and 2 GB of RAM.clock, 2 MB of cache memory, and 2 GB of RAM.



Performance Analysis

� To analyze the behavior and performance of the tabu 

search heuristic, we compare its output to the optimal 

solution obtained by using the branch-and-bound 

algorithm of CPLEX version 4.0, with primal 

simplex-based bounding

� We also compare the tabu search to two other � We also compare the tabu search to two other 

heuristics.



Performance Analysis

� The first heuristic method (GREEDY)

– accepts only improving (pivot) moves in Step 5 of local 

search. 

– This corresponds to a classical greedy descent procedure. 

– Contrasted to the results of the tabu search method, it acts 

as a measure of the impact on the solution quality of the as a measure of the impact on the solution quality of the 

imposition of a metaheuristic (tabu search) logic over the 

greedy search.



Performance Analysis

� The second heuristic method (UBR)

– The upper bound heuristic makes use of the information 

yielded by the lower bounding procedure and combines 

projection and resource decomposition methods



Performance Analysis

� Computational Results



Performance Analysis



Performance Analysis

� Problems are identified with a quintuplet that indicates 

– (i) the number of nodes

– (ii) the number of arcs

– (iii) the number of commodities

– (iv) if fixed-costs are relatively high (F) or low (V) 

compared to variable costscompared to variable costs

– (v) if the problem is tightly (T) or somewhat loosely (L) 

capacitated.



Performance Analysis

� Table information:

– the GREEDY and UBR columns display the value of the 

best feasible solution obtained by the greedy descent and 

the resource-decomposition heuristic, respectively. 

– The OPT column corresponds to the branch-and-bound 

algorithm of CPLEX version 4.0, with primal simplex-algorithm of CPLEX version 4.0, with primal simplex-

based bounding. 

– In the TABU column, the results of tabu search methods 

with tuned parameters are depicted



Performance Analysis

� Table information:

– X indicates that the procedure failed to find a feasible 

solution. 

– The figures in parentheses in the OPT and TABU columns 

represent total computation times, in CPU seconds; 

– t indicates that the procedure stopped due to a time limit – t indicates that the procedure stopped due to a time limit 

condition.

– When branch-and-bound has identified a feasible solution, 

the GAP column displays the optimality gap of the tabu 

procedure relative to it.

– A limit of 6 hours (21000 CPU seconds) computation time 

was imposed on the branch-and-bound.



Experimentation and Analyses



Experimentation and Analyses



Experimentation and Analyses

� Second set of problems

– A second set of problems has been generated, therefore, in 

order to study these relationships further. 

– The problem instances in this set, identified with the letter 

R, have been designed to facilitate the evaluation of the 

impact on performance of one problem characteristic only.impact on performance of one problem characteristic only.



Experimentation and Analyses

� Distribution of Relative Gaps

– Column X : for 22 problem instances, branch-and-bound did not – Column X : for 22 problem instances, branch-and-bound did not 

find a feasible solution

– Column Opt : the tabu search heuristic identified 19 optimum 

solutions 

– Column Imp : the tabu search heuristic improved the branch-

and-bound feasible solution (no optimum known) for 16 other 

problems.

– The next columns corresponds to the (0%, 1%] gap interval, and 

so on.



Experimentation and Analyses

� Aggregate Relative Gaps

– The figures in the Improvement Gap column correspond 

to the 16 problems for which the tabu search improved the 

branch-and-bound feasible solution. 

– For the 139 other problem instances, the tabu search 

method achieved an average gap relative to the branch-and-

bound solution of 6.24% (the Strict Opt Gap column).



The EndThe End


