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Introduction

� Reference:

– Ghamlouche I., Crainic T.G., Gendreau, M. Cycle-based 

neighbourhoods for fixed-charge capacitated 

multicommodity network design. Operations Research 

2003, 51:655–67.



Introduction

� The goal of this paper is to propose a new class of 

neighbourhoods for meta-heuristics aimed at the fixed-

charge capacitated multicommodity network design 

formulation (CMND).

� The neighbourhood defines moves that may explicitly 

take into account the impact on the total design cost of take into account the impact on the total design cost of 

potential modifications to the flow distribution of 

several commodities simultaneously. 

� The fundamental idea is to explore the space of the arc 

design variables by re-directing flow around cycles 

and closing and opening design arcs accordingly. 



Introduction

� Compared to path-based neighbourhoods

– First, the move evaluations are more comprehensive (since 

all commodities on a cycle are explicitly considered)

– Second, the range of moves is broader since flow deviations 

are no longer restricted to paths linking origins and 

destinations of actual commodities. destinations of actual commodities. 

� To illustrate the quality of this neighbourhood, we 

implement two instances in a tabu-based local search 

metaheuristic. 



Introduction

� Computational experiments on problems of various 

sizes (up to 700 arcs and 400 commodities) show that 

the tabu search algorithm based on these 

neighbourhood structures is quite powerful, 

outperforming already existing methods in solution 

quality for similar computational efforts.quality for similar computational efforts.



Introduction

� The contribution of this paper 

– First, it introduces a new class of cycle-based 

neighbourhood structures for meta-heuristics aimed at the 

CMND, together with efficient procedures to identify good 

moves. 

– Second, to demonstrate the quality of the cycle-based – Second, to demonstrate the quality of the cycle-based 

neighbourhoods, it proposes a very simple tabu search 

procedure that offers the current best heuristic solutions for 

the CMND.



2. Mathematical Formulation2. Mathematical Formulation



Mathematical Formulation

� Let G = ( N,  A) be a network with set of nodes  N and 

set of directed arcs A. 

� We assume that all (i, j œ  A) are design arcs. 

� Let P denote the set of commodities to move using 

this network, where each commodity p has a single 

origin o(p), a single destination s(p), and a flow origin o(p), a single destination s(p), and a flow 

requirement of wp units between its origin and 

destination nodes. 



Mathematical Formulation

� The arc-based formulation of the CMND can be 

written as follows:



Mathematical Formulation



Mathematical Formulation

� For a given design vector ȳ, the arc-based formulation of the 

CMND becomes a capacitated multicommodity minimum cost 

flow problem (CMCF):

� where  A (ȳ) stands for the set of arcs corresponding to the 

design ȳ.



3. Cycle-based Neighbourhoods3. Cycle-based Neighbourhoods



Cycle-based Neighbourhoods

� Consider the solution space of the design variables y. 

� A solution to the CMND is then an assignment ȳ of 0 

or 1 to each design variable, plus the optimal flow of 

the corresponding multicommodity minimum cost 

flow problem x*(ȳ). 

Similarly, the objective function value associated to a � Similarly, the objective function value associated to a 

solution (ȳ, x*(ȳ)) is the sum of the fixed cost of the 

open arcs in ȳ and the objective function value of the 

CMCF associated to x*(ȳ):



Cycle-based Neighbourhoods

� A Directed Path:

– A directed path from node i0 to in is a sequence of closed or 

opened arcs f(i0, i1), (i1, i2), …, (in-1, in) such that the origin 

node of each arc is the destination node of the preceding arc 

in the sequence, and i0, …, in are all distinct nodes. 



Cycle-based Neighbourhoods

� A path: {(h, f), (f, a), (a, b), (b, c), (c, s)} 



Cycle-based Neighbourhoods

� A simple chain 

– is similar to a path except that arcs are not restricted to 

follow the same direction. 

– A chain: {(a, b), (b, c), (c, d)} 



Cycle-based Neighbourhoods

� A cycle 

– is a closed chain, 

– A cycle: {(a, b), (b, c), (c, d), (d, e), (e, f), (f, a)}



Cycle-based Neighbourhoods

� Residual network

– The concept of residual network plays a central role in the 

development of all the maximum flow algorithms we 

consider. 

– Given a flow x, the residual capacity rij of any arc (i, j) œ A 

is the maximum additional flow that can be sent from node is the maximum additional flow that can be sent from node 

i to node j using the arcs (i, j) and (j, i). 

– The residual capacity rij has two components: 

� (1) uij - xij, the unused capacity of arc (i, j), and 

� (2) the current flow xji on arc (j, i), which we can cancel to increase 

the flow from node i to node j. 



Cycle-based Neighbourhoods

� We refer to the network G(x) consisting of the arcs 

with positive residual capacities as the residual 

network (with respect to the flow x). 



Cycle-based Neighbourhoods

– (a) original network G with a flow x, 

– (b) residual network G(x), rij = uij – xij, rji = xij



3.1 Neighbourhood Definition and 
ExplorationExploration



Neighbourhood Definition and Exploration

� The fundamental idea of the new neighbourhood class 

is that one may move from one solution to another by:

– 1. Identifying two points in the network together with two 

paths connecting these points, thus closing a cycle,

– 2. Deviating the total flow from one path to another such 

that at least one currently open arc becomes empty,that at least one currently open arc becomes empty,

– 3. Closing all previously open arcs in the cycle that are 

empty following the flow deviation and, symmetrically, 

opening all previously closed arcs that now have flow.



Neighbourhood Definition and Exploration

� Example: paths {(f, e), (e, d), (d, c)} and {(f, a), (a, b), (b, c)} 

in the network form a cycle and flow from the former may be 

deviated to the latter.



Neighbourhood Definition and Exploration

� Three arcs will thus be open, (f, a), (a, b), and (b, c) 

and, provided sufficient flow may be deviated, at least 

one previously open arc will be closed.

� The general neighbourhood structure we propose for 

the CMND may then be written as:

– (ȳ) = {y: obtained from ȳ by complementing the status of –  V(ȳ) = {y: obtained from ȳ by complementing the status of 

a number of arcs following the deviation of flow in a given 

cycle in A(ȳ)}



Neighbourhood Definition and Exploration

� Such neighbourhoods are huge and their explicit and 

exhaustive exploration is not practical in most 

situations. 

� Moreover, the complete evaluation of any design 

modification involves the resolution of a capacitated 

multicommodity network flow problem, which rapidly multicommodity network flow problem, which rapidly 

becomes extremely computation intensive. 

� Thus, in order to select the best move out of a given 

solution, one cannot simply identify explicitly all 

neighbours, evaluate them, and retain the best one. 



Neighbourhood Definition and Exploration

� A more efficient procedure must be implemented that 

– 1) avoids the complete evaluation of every examined move 

and 

– 2) generates a limited number of cycles that include the 

“good” moves. 



Neighbourhood Definition and Exploration

� Note that not all cycles are of equal interest. 

� We seek, in particular, moves that modify the status of 

several arcs and that lead to a significant modification 

of the flow distribution.

� Therefore, moves that close at least one arc and open 

new paths for a group of commodities appear new paths for a group of commodities appear 

attractive.



Neighbourhood Definition and Exploration

� To close an arc (i, j), one must be able to deviate all its 

flow. 

� Residual capacity of a cycle

– Let the residual capacity of a cycle denote the maximum 

flow one can deviate around the cycle. 

The residual capacity of any cycle that includes (i, j) � The residual capacity of any cycle that includes (i, j) 

must then be at least equal to the total flow on arc (i, 

j):



Neighbourhood Definition and Exploration

� The cycles of interest to us are those that display a 

residual capacity equal to one of the values in Γ

defined as the set of the total (positive) volumes on the 

open arcs of the corresponding network:

� We thus progressively build a set of good candidate 

neighbours (cycles) among which the best move is 

then selected.



Neighbourhood Definition and Exploration

� Let  C  ŒA denote the set of candidate links, where 

each arc (i, j) œ C will be considered as the starting 

point of cycles.

� C may include all the arcs in G.

� Let C(γ) Œ C include all arcs (i, j) œ C that can support 

a movement of γ units of flow.a movement of γ units of flow.

� A closed arc may belong to C(γ) only if its capacity is 

at least γ. 

� For an open arc, either its flow or its residual capacity 

must be at least γ units.

– i.e. its flow can not be less than γ



Neighbourhood Definition and Exploration

� The heuristic procedure to explore the neighbourhood 

V(ȳ) of a given solution ȳ, given a set of candidate 

links C(ȳ):

� Build set Γ(ȳ),

� For each γ œ Γ(ȳ)

– Build the γ-residual network,

– For each arc (i, j) œ C(γ) find the lowest cost cycle by using 

the network optimization procedure,

� Select and implement the best move,

� Evaluate new solution.



3.2 The γ-Residual Network3.2 The γ-Residual Network



The γ-Residual Network

� The objective is to build a network such that, given a 

flow value γ, the network optimization procedure may 

– 1) identify low cost cycles that support the deviation of at 

least γ units of flow and 

– 2) explicitly consider the impact of a potential closure or 

opening of an arc due to the deviation of flow.opening of an arc due to the deviation of flow.



The γ-Residual Network

� To build the γ-residual network corresponding to a 

flow variation of γ units, replace each arc (i, j) of the 

original network by at most two arcs (i, j)+ and (j, i)–

� Arc (i, j)+ is included only if an additional amount of γ

units of flow may pass on arc (i, j), that is if its 

residual capacity residual capacity 

� is greater or equal to γ.



The γ-Residual Network

� The cost cij
+ associated to (i, j)+ approximates the cost 

of routing γ units of additional flow on arc (i, j).

� It equals the average commodity routing costs on the 

arc, plus the fixed cost if it is currently closed:



The γ-Residual Network

� Symmetrically, arc (j, i)– is not included in the γ-

residual network if the total flow on arc (i, j):

� is less than γ. 

� Otherwise, we associate to (j, i)– the cost  cji
– that � Otherwise, we associate to (j, i) the cost  cji that 

approximates the value of a reduction of γ units of the 

total flow (all commodities) currently using arc (i, j). 

� This approximation is computed as the weighted 

average of the routing costs of the commodities 

currently using arc (i, j). 

� The fixed cost of (i, j) is then subtracted if the 

reduction of γ units of flow leaves the arc empty.



The γ-Residual Network

� The cost  cji
– :



The γ-Residual Network

� Example: (fixed cost, routing cost, capacity, flow)



The γ-Residual Network

� Example:

– In this example, arcs are labeled by the fixed cost, the 

routing cost (only one commodity is considered), the 

capacity, and the total flow. 

– We build a 2-residual network and look for the lowest cost 

cycle that passes through arc (C, D).cycle that passes through arc (C, D).



The γ-Residual Network

� One unit of flow passes on arc (O, A) and its residual capacity is 

equal to 1. Consequently, one can neither send nor take out 2 

units of flow and, thus, there are no arcs between O and A. 



The γ-Residual Network

� Arc (O, C) is saturated, so no more flow can be routed 

from O to C and the associated arc does not appear in 



The γ-Residual Network

� On the other hand, reducing the flow of arc (O, C) by 

2 units of flow leaves the arc empty, and thus the (C, 

O) arc is included in the 2-residual network with a cost 

-6 representing the savings in routing and fixed costs. 

� The rest of the arcs are treated similarly.



The γ-Residual Network

� Two directed cycles pass through arc (C, D) in the 2-

residual network: (D, F), (F,E), (E,C), (C,D) and 

(D,G), (G, F), (F,E), (E,C), (C,D). 



The γ-Residual Network

� The (D,G), (G, F), (F,E), (E,C), (C,D) has the lowest 

cost with value -17. 



The γ-Residual Network

� This cost represents the net change in the objective function of 

the design formulation when moving 2 units of flow from path 

(C,E), (E, F), (F,G) to path (C,D), (D,G)



The γ-Residual Network

� This cost represents the net change in the objective 

function of the design formulation when moving 2 

units of flow from path (C,E), (E, F), (F,G) to path 

(C,D), (D,G)

� This neighbour is thus reached by a complex move 

that involves opening two arcs ((C,D), (D,G)) and that involves opening two arcs ((C,D), (D,G)) and 

closing three others ((C,E), (E, F), (F,G)).



3.3 Heuristic to Identify Low Cost 
CyclesCycles



Heuristic to Identify Low Cost Cycles

� The enumeration of all cycles passing through a given 

arc in a γ-residual network is expensive.

� Since one is interested in the lowest cost cycle only, 

one would like to find this particular cycle without 

enumerating all the others. 

A network optimization procedure is proposed for � A network optimization procedure is proposed for 

this purpose.



Heuristic to Identify Low Cost Cycles

� The main idea is to find for a given arc (i, j) the 

shortest path from j to i to complete the cycle. 

� Yet, since the γ-residual network may contain negative 

cost directed cycles, finding a shortest path is NP-hard. 

� Consequently, we do not attempt to solve the problem 

exactly. exactly. 

� We rather develop a heuristic based on a modification 

of the shortest path label-correcting algorithm that 

avoids getting trapped in negative directed cycles and 

allows to find low-cost cycles.



4 Tabu Search with Cycle-based 
NeighbourhoodsNeighbourhoods



Tabu Search with Cycle-based Neighbourhoods

� To evaluate the concepts introduced in the previous 

section, we developed a simple tabu search-based local 

search procedure that integrates two versions of the 

cycle-based neighbourhood: 

– First one that considers the flow of all commodities when 

determining cycles determining cycles 

– Second one that refines the search by implementing moves 

resulting from the deviation of the flow of one commodity 

only at a time.



4.1 The Tabu Search Procedure4.1 The Tabu Search Procedure



The Tabu Search Procedure

� Following an initialization phase, the tabu search 

procedure explores the y solution space 

� At each iteration, the best non-tabu move is 

determined and implemented regardless whether it 

improves the overall solution or not. 

A short-term tabu memory is used to record � A short-term tabu memory is used to record 

characteristics of visited solutions to avoid cycling. 

� When a particularly good solution is encountered, the 

search is intensified using a particular implementation 

of cycle-based neighbourhoods that consider the flow 

distribution of one commodity only. 



The Tabu Search Procedure

� A solution is considered particularly good when it 

either improves the objective value of the best known 

solution or is within a pre-defined percentage of this 

value. 

� The method terminates whenever a predefined 

stopping criterion (number of iterations, CPU time, stopping criterion (number of iterations, CPU time, 

etc.) is met.



The Tabu Search Procedure

� To select the best move in the neighbourhood of a 

given solution ȳ, the procedure first determines the set 

of the flow deviation values Γ(ȳ) as defined by: 

� To reduce the computational burden, the set of 

candidate arcs C is restricted to a random subset of 

closed arcs. 



The Tabu Search Procedure

� Then, a γ-residual network is built for each value 

γ œ Γ(ȳ)

and a low-cost cycle is found for each arc (i, j) œ C(γ). 

� The lowest overall cycle is then considered as the best 

local search move from the current solution. 



The Tabu Search Procedure

� The tabu search procedure:

� Initialization

– Generate an initial feasible solution and initiate the 

BestSolution and CurrentSolution to its objective value.

� Main local search loop 

– While a stopping criterion is not met

– Determine sets C , Γ(ȳ) , and C(γ) for the current solution ȳ.

– Determine the best overall cycle

– Move to the new solution by opening and closing the 

appropriate arcs,

– Determine the solution value of the new solution by solving 

exactly the associated capacitated multicommodity network 

flow problem,



The Tabu Search Procedure

� Main local search loop (cont.)

– Assign a tabu status to each complemented arc,

– If the solution is infeasible, perform a restoration phase,

– If, 

– the current solution is a “good” solution and an 

intensification phase is performed.

– If CurrentSolution < BestSolution update BestSolution



The Tabu Search Procedure

� Short-term tabu memory 

– is used to prevent the search from cycling. 

– Thus, the arcs that are opened or closed receive a tabu 

status that forbids the reversal of the move for a given 

number of iterations. 

– The tabu memory is also updated following local search – The tabu memory is also updated following local search 

and intensification moves.



The Tabu Search Procedure

� Initial Feasible Solution

– An initial feasible solution is produced by opening all arcs 

and solving the corresponding flow problem. 

– All arcs with flow are then considered open, while all 

unused arcs are closed.

– An intensification phase is then performed until negative – An intensification phase is then performed until negative 

cycles are no longer detected for any commodity.



4.2 Restoration from Infeasible Moves4.2 Restoration from Infeasible Moves



Restoration from Infeasible Moves

� The solution produced by a local search move might 

be infeasible. 

� This follows from the fact that commodities are 

aggregated when local search moves are determined 

on γ-residual networks. 

Consequently, in the new network configuration that � Consequently, in the new network configuration that 

follows the closing and opening of arcs in the original 

network, commodities might follow different paths 

than the expected ones (i.e., those in the local search 

cycle-move).



Restoration from Infeasible Moves

� Example: consider this network 

(fixed cost, routing cost, capacity, flow)



Restoration from Infeasible Moves

� Example: (cont.)

– Three commodities p1, p2, and p3 share the network. 

– Let (x, y, z, t) denote respectively the fixed cost, routing 

cost, capacity

– Flow on each arc and suppose that (A, D, 2), (E, G, 2) and 

(B, F, 2) represent the origin, destination, and demand of (B, F, 2) represent the origin, destination, and demand of 

commodity p1, p2, and p3, respectively.

– The current solution routes 2 units of flow of commodity p1 

on path (A, B), (B, C), (C, D), 2 units of flow of 

commodity p2 on path (E,C), (C, F), (F,G), and 2 units of 

flow of commodity p3 on path (B,C), (C, F). 

– The objective function value associated to the current 

solution equals 1021.



Restoration from Infeasible Moves

� Example: (cont.)

– In this example 

Γ = {2, 4}

– Assume all closed arcs are in C and an empty tabu list. 



Restoration from Infeasible Moves

� The lowest cost cycle in the 4-residual network shows an 

improvement of -989. 



Restoration from Infeasible Moves

� Example: (cont.)

– Consequently, the procedure would retain the cycle (B, H), 

(H, I), (I, J), (J, F), (F, C), (C, B) and would move to the 

best neighbour 

� by opening arcs (B, H), (H, I), (I, J), and (J, F) and 

� closing the arcs without flow (B, C) and (C, F). � closing the arcs without flow (B, C) and (C, F). 

– The resulting network is infeasible since the demands of 

commodities p1 and p2 may no longer be satisfied.



Restoration from Infeasible Moves

� Example: (cont.)



Restoration from Infeasible Moves

� To detect infeasible solutions, artificial arcs between 

the origin and destination nodes of each commodity 

may be added to the network. 

� These arcs receive capacities equal to the demand of 

the associated commodity and high routing costs to 

ensure that an artificial arc will bear flow only if the ensure that an artificial arc will bear flow only if the 

solution is infeasible. 



Restoration from Infeasible Moves

� When the solution produced by a local search move is 

infeasible, a restoration phase is undertaken in order 

to reach a solution in the feasible domain. 

� This phase is similar to the neighbourhood local 

search, except that the set C is made exclusively of 

artificial arcs with a positive flow, while the set Γ is artificial arcs with a positive flow, while the set Γ is 

restricted to the flow of commodities routed on these 

artificial arcs.



4.3 Intensification4.3 Intensification



Intensification

� The intensification phase is called each time a local 

search move yields a “good” solution that is, a solution 

that improves the best overall solution or is close to it. 

� This phase searches to improve the solution further by 

iteratively modifying the flow distribution of one 

commodity only.commodity only.



Intensification

� Adoption of the neighbourhood for the intensification 

phase: 

– Moves are detected by letting the flow of one commodity 

move around negative directed cycles while the flow of the 

other commodities is kept fixed. 

– The set Γ is instantiated for each commodity (denoted Γp) to – The set Γ is instantiated for each commodity (denoted Γp) to 

contain the flow of the particular commodity that exist on 

each arc of the network. 

– Moreover, only improving moves are accepted during this 

phase to ensure that the chosen neighbour will always yield 

a feasible solution better than the current one. 



Intensification

� The intensification phase:

– Repeat until no negative cycle is detected in any γ-residual 

network

– For each commodity p œ  P and flow value γ œ Γp

� Build the γ -residual network

� Find a low cost cycle for each arc (i, j) œ C(γ), γ œ Γp
� Find a low cost cycle for each arc (i, j) œ C(γ), γ œ Γp

� Select the best overall cycle;

� Denote γbest the associated volume of deviated flow;



Intensification

� The intensification phase:

� If the selected cycle is improving (negative cost)

– 1. Update the solution:

• Modify the flow around the selected cycle by a quantity 

γbest ;

• Open/close appropriate arcs;

• Update the cost of the current solution by adding the cost of • Update the cost of the current solution by adding the cost of 

the cycle (without solving the CMCF).

– 2. Assign a Tabu status to each complemented arc.

� Solve exactly the CMCF associated to the current design.



5 Computational Results5 Computational Results



Computational Results

� To ensure meaningful comparisons, we experiment on 

the same two sets of problem instances also used by 

Crainic, Gendreau, and Farvolden (2000).

� The computer code is written in C++. 

� The exact evaluation of the capacitated 

multicommodity network flow problems is done using multicommodity network flow problems is done using 

the linear programming solver of CPLEX 6.5. 

� Unless indicated otherwise, tests were conducted on a 

Sun Ultra-60/2300 workstation with 2 Gigabyte of 

RAM, operating under Solaris 2.6. 

� Computing times are reported in seconds.



5.1 Calibration5.1 Calibration



Calibration

� Key parameters of the tabu search meta-heuristic:

– The size of the neighbourhood set explored at each 

iteration. 

� This size depends on the dimension of the candidate set C that is, 

on the percentage of closed arcs randomly selected. 

� Two values, 50% and 70% of the closed arcs, have been tested.

– The length of the tabu tenure of arcs opened and closed 

following a local search or an intensification move. 

� Four values 1, 2, 3, and 5 were considered initially. 

� The 1 and 5 values were rapidly dropped, however, since cycling 

was observed for a tabu tenure length of 1, while for a value equal to 5 

the quality of the solutions started to decrease.

– The threshold used to determine a “good” solution: 

� IntensGap equal to 7%, 9%, and 11% of relative improvement.



Calibration

� Calibration experiments were conducted the same 

problem instances used by Crainic, Gendreau, and 

Farvolden (2000) to calibrate their path-based tabu 

search meta-heuristic.

� The 10 problems cover network sizes from 100 to 700 

design arcs and from 10 to 400 commodities. design arcs and from 10 to 400 commodities. 

� They also display relatively high fixed costs compared 

to routing costs and tightly capacitated. 

� Moreover, since a random number generator controls 

the selection of arcs in C, each run was repeated 3 

times. 



Calibration

� The impact of the random seed used was not major, 

but large enough to make it unsafe to draw conclusions 

from a single run.



Calibration

� Each parameter combination was ranked for each 

problem instance 

– according to the average gap (over 3 runs) relative to the 

best known solution 

– that of the branch-and-bound procedure of CPLEX 6.5, 

when available, or that obtained by Crainic, Gendreau, and when available, or that obtained by Crainic, Gendreau, and 

Farvolden 2000, otherwise



Calibration

� A score of 10, 9, 8, .. , 2, 1 is assigned to each of the 

first ten places, respectively. 

– The performance of each parameter setting is then 

aggregated over all runs

– Scores are summed up, while average gaps and CPU 

solution times are averaged.solution times are averaged.

– Over the set of 360 runs: 10 problems tested 3 times for 12 

parameter settings.



Calibration

� Parameter Setting Performances



Calibration

� The parameter setting performances table

– displays for each parameter combination these aggregated 

results

– The first column holds the parameter setting, the second 

and third columns present the global average gaps and CPU 

times, respectively, while the last column displays the total times, respectively, while the last column displays the total 

score.

– The final choice was then made on the other performance 

measures and the parameter combination C=50%, tabu 

tenure= 2, IntensGap= 9% was selected since it offers the 

lowest global average gap and CPU time.



Calibration

� To complete the calibration phase, we examined if the 

impact of the intensification phase and the trim 

procedure on the solution quality.

� Intensification phase

– Recall that the intensification phase is based on the idea of 

focusing the search on promising regions, signaled by focusing the search on promising regions, signaled by 

solutions that either improve the overall best solution or are 

close to this value, in order to avoid bypassing solutions of 

good quality. 



Calibration

� Trim procedure

– The exact evaluation of a new configuration performed by 

solving the associated minimum cost network flow 

problem, may result in arcs that are open but do not carry 

flow. 

– The trim procedure consists in closing these arcs. – The trim procedure consists in closing these arcs. 

– This reduces the solution value, but also modifies the basic 

move definition and impacts the search trajectory.



Calibration

� We investigated by running five problems using all 

four possible combinations of including or not the two 

procedures. 

� The results indicate that including the intensification 

and trim procedures is beneficial for quality of the 

search.search.

� The following figure illustrates the behaviour of the 

four versions of the tabu search procedure on two 

problem instances, 

– 20,300,200,F,L and 20,300,40,F,T (identified by the 

number of nodes, design arcs, commodities, a letter 

indicating high fixed costs, and rather loose and tight 

capacities, respectively). 



Calibration



Calibration



5.2 Result Analysis5.2 Result Analysis



Result Analysis

� To evaluate the performance of the tabu search 

algorithm proposed in this paper, we compare its 

output to 

– the optimal solution obtained using the branch-and-bound 

algorithm of CPLEX 6.5, 

– as well as to the results of the TABU-PATH procedure – as well as to the results of the TABU-PATH procedure 

presented by Crainic, Gendreau, and Farvolden (2000)



Result Analysis

� The same two data sets used by Crainic, Gendreau, 

and Farvolden (2000) are also used in this paper. 

� Problems in both sets are 

– general transshipment networks with no parallel arcs,

– single origin-destination pair for each commodity, 

– and unique but arc-specific commodity routing costs. 

– Problem instances have been generated to offer for each 

network size a variety of fixed to routing cost and capacity 

to demand ratios. 



Computational Results, C problems



Computational Results, C problems



Computational Results, C problems



Computational Results, C problems



Result Analysis

� The problems are identified in the first column by the 

– number of nodes, arcs, and commodities, 

– as well as two letters summarizing the fixed cost and 

capacity information: 

� a relatively high or low fixed cost relative to the routing cost is 

signaled by the letter F or L, respectively, signaled by the letter F or L, respectively, 

� while letters T and L indicate respectively if the problem is tightly 

or somewhat loosely capacitated compared to the total demand. 



Result Analysis

� The opt column 

– corresponds to the solution of the the branch-and-bound 

algorithm solved using CPLEX 6.5 on one 400MHz 

processor of a 64-CPU Sun Enterprise 10000 with 64 

Gigabyte of RAM, operating under Solaris 2.7. 

– A limit of 10 hours was imposed. – A limit of 10 hours was imposed. 

– An X indicates that the procedure has failed to produce a 

feasible solution within this time limit, while a t indicates 

that the procedure stopped due to a time limit condition.



Result Analysis

� The Column TABU-PATH 

– holds the results found by the path-based tabu search of 

Crainic, Gendreau, and Farvolden (2000) on the same 

workstations. 

– For a valid comparison between the two approaches, two 

results are displayed for the cycle-based tabu search meta-results are displayed for the cycle-based tabu search meta-

heuristic.

� The tabu-cycle column 

– displays solutions found by our approach using the same 

CPU time reported for the path-based method. 



Result Analysis

� The column TC(400)

– To illustrate and analyze the behaviour of the algorithm we 

propose when longer runs are performed, column tc(400)

displays computational results after 400 iterations. 

� CPU time

– For all methods, the figures in parentheses represent total – For all methods, the figures in parentheses represent total 

computational time in CPU seconds on the appropriate 

computers. 



Result Analysis

� GAP relative 

– For the three meta-heuristic results, the next column 

displays the optimality gap relative to the branch-and-

bound solution. 

– When branch-and-bound has failed to identify a feasible 

solution, the gap relative to the path-based tabu search is solution, the gap relative to the path-based tabu search is 

displayed instead.



Result Analysis

� Conclusion #1:

– is that fixed cost, capacitated, multicommodity network 

design problems are indeed difficult to solve, as indicated 

by the performance of a state-of-the-art mixed integer 

programming solver.

� Conclusion #2:� Conclusion #2:

– tabu-cycle outperforms tabu-path for an equivalent 

computational effort in almost all experiments. 

– Thus, out of 43 problem instances, only for 9, relatively 

small, problems are the solutions of tabu-path better than 

those of tabu-cycle. 



Result Analysis

� Conclusion #3:

– The superiority of tabu-cycle appears to be greater when 

fixed cost are high

– the optimality gap of tabu-cycle for these problems is at 

most 14%, while it reaches some 33% for tabu-path. 

� Conclusion #4:� Conclusion #4:

– The average percentage improvement of tabu-cycle 

compared to tabu-path is around 3.36%, with a maximum 

improvement of 18.13%. 

– These results are a first indication of the effectiveness of 

the cycle-based neighbourhood structures to generate good 

solutions for the CMND.



Result Analysis

� Conclusion #5:

– The results displayed in Tables also support the hypothesis 

that our algorithm may identify higher quality solution 

given longer search times. 

– Using 400 iterations, improved solutions were found for 35 

out of the 41 problems (2 solutions were already optimal).out of the 41 problems (2 solutions were already optimal).

– Moreover, the benefits obtained from increasing the 

computational effort appear to become greater for larger 

instances. 

– Thus, for example, for problems with 200 commodities the 

maximum optimality gap is decreased from 13.21% to 

7.80%. 



Result Analysis

� Distribution of Relative Gaps

– the distribution of the optimality gap relative to branch-and-– the distribution of the optimality gap relative to branch-and-

bound for the two sets of problem instances, obtained by 

the cycle-based tabu search after 400 iterations. 



Result Analysis

� Distribution of Relative Gaps

– The first column identifies the problems set, 

– the second column indicates the number of problems where 

branch-and-bound did not find a feasible solution (in 10 

hours),

– the third indicates the number of optimal solutions found by – the third indicates the number of optimal solutions found by 

the meta-heuristic, 

– the fourth displays the number of problems where the 

heuristic solution is better than the one found by branch-

and-bound after 10 hours of computation. 

– The next six columns correspond to the indicated gap 

intervals. 



Result Analysis

� Distribution of Relative Gaps

– For problems in set C, the optimality gap never exceed 8% 

and is often much smaller than 2%, for an average within 

2.10% of the best solutions found by branch-and-bound.



The EndThe End


