
In the name of GodIn the name of God

Part 2. Complexity Theory

2.1. Complexity of Algorithms

Complexity of Algorithms

2.1. Complexity of Algorithms

Spring 2010
Instructor: Dr. Masoud Yaghini



Outline

� Algorithms

� Analyzing algorithms

� Order of Growth

� Complexity of Algorithms

� References

Complexity of Algorithms

� References



Algorithms

Complexity of Algorithms



Algorithms

� Algorithm

– An algorithm is any well-defined computational procedure 

that takes some values as input and produces some values 

as output. 

� Computational problem

– An algorithm is a tool for solving a well-specified 

Complexity of Algorithms

– An algorithm is a tool for solving a well-specified 

computational problem.

� Correct algorithm

– An algorithm is said to be correct if, for every input 

instance, it halts with the correct output.



Pseudocode

� Pseudocode

– The algorithms are typically described as programs written 

in a pseudocode that is similar in many respects to C, 

Pascal, or Java.

� Difference between pseudocode and real code

– Pseudocode employs an expressive method that is most 

Complexity of Algorithms

– Pseudocode employs an expressive method that is most 

clear and concise to specify a given algorithm

– Pseudocode is not typically concerned with issues of 

software engineering, such as data abstraction, modularity, 

and error handling



Pseudocode

� Indentation indicates block structure.

� The looping constructs while, for, and repeat and 

� The conditional constructs if, then, and else

� There is a symbol that indicates a comment.

� An assignment of the form i← e assigns variables i

Complexity of Algorithms

� An assignment of the form i← e assigns variables i

the value of expression e

� A multiple assignment of the form i← j ← e assigns 

to both variables i and j the value of expression e

� Array elements are accessed by specifying the array 

name followed by the index in square brackets



An Example: Insertion Sort

� Example: sorting problem

– Input: A sequence of n numbers ‹a1, a2, . . . , an›.

– Output: A permutation (reordering) ‹a΄1, a ΄2, . . . , a΄n› of 

the input sequence such that a΄1≤ a΄2 ≤ . . . ≤ a΄n›

� Insertion sort algorithm

– Insertion sort is an efficient algorithm for sorting a small 

Complexity of Algorithms

– Insertion sort is an efficient algorithm for sorting a small 

number of elements.

– The numbers that we wish to sort are also known as the 

keys.

– Insertion sort works the way many people sort a hand of 

playing cards.



An Example: Insertion Sort

� Sorting a hand of cards using insertion sort

Complexity of Algorithms



An Example: Insertion Sort

� Input: an array A[1 . . n] containing a sequence of 

length n that is to be sorted.

Complexity of Algorithms



An Example: Insertion Sort

� The operation of INSERTION-SORT on the array A = 

‹5, 2, 4, 6, 1, 3›.

Complexity of Algorithms



An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

Complexity of Algorithms

j = j - 1

}

A[j+1] = key

}

}



An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

30 10 40 20

1 2 3 4

i = ∅∅∅∅ j = ∅∅∅∅ key = ∅∅∅∅

A[j] = ∅∅∅∅ A[j+1] = ∅∅∅∅

Complexity of Algorithms

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}



An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

30 10 40 20

1 2 3 4

i = 2 j = 1 key = 10

A[j] = 30 A[j+1] = 10

Complexity of Algorithms

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}



An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

30 30 40 20

1 2 3 4

i = 2 j = 1 key = 10

A[j] = 30 A[j+1] = 30

Complexity of Algorithms

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}



An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

30 30 40 20

1 2 3 4

i = 2 j = 1 key = 10

A[j] = 30 A[j+1] = 30

Complexity of Algorithms

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}



An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

30 30 40 20

1 2 3 4

i = 2 j = 0 key = 10

A[j] = ∅∅∅∅ A[j+1] = 30

Complexity of Algorithms

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}



An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

30 30 40 20

1 2 3 4

i = 2 j = 0 key = 10

A[j] = ∅∅∅∅ A[j+1] = 30

Complexity of Algorithms

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}



An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

10 30 40 20

1 2 3 4

i = 2 j = 0 key = 10

A[j] = ∅∅∅∅ A[j+1] = 10

Complexity of Algorithms

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}



An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

10 30 40 20

1 2 3 4

i = 3 j = 0 key = 10

A[j] = ∅∅∅∅ A[j+1] = 10

Complexity of Algorithms

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}



An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

10 30 40 20

1 2 3 4

i = 3 j = 0 key = 40

A[j] = ∅∅∅∅ A[j+1] = 10

Complexity of Algorithms

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}



An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

10 30 40 20

1 2 3 4

i = 3 j = 0 key = 40

A[j] = ∅∅∅∅ A[j+1] = 10

Complexity of Algorithms

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}



An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

10 30 40 20

1 2 3 4

i = 3 j = 2 key = 40

A[j] = 30 A[j+1] = 40

Complexity of Algorithms

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}



An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

10 30 40 20

1 2 3 4

i = 3 j = 2 key = 40

A[j] = 30 A[j+1] = 40

Complexity of Algorithms

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}



An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

10 30 40 20

1 2 3 4

i = 3 j = 2 key = 40

A[j] = 30 A[j+1] = 40

Complexity of Algorithms

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}



An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

10 30 40 20

1 2 3 4

i = 4 j = 2 key = 40

A[j] = 30 A[j+1] = 40

Complexity of Algorithms

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}



An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

10 30 40 20

1 2 3 4

i = 4 j = 2 key = 20

A[j] = 30 A[j+1] = 40

Complexity of Algorithms

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}



An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

10 30 40 20

1 2 3 4

i = 4 j = 2 key = 20

A[j] = 30 A[j+1] = 40

Complexity of Algorithms

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}



An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

10 30 40 20

1 2 3 4

i = 4 j = 3 key = 20

A[j] = 40 A[j+1] = 20

Complexity of Algorithms

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}



An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

10 30 40 20

1 2 3 4

i = 4 j = 3 key = 20

A[j] = 40 A[j+1] = 20

Complexity of Algorithms

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}



An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

10 30 40 40

1 2 3 4

i = 4 j = 3 key = 20

A[j] = 40 A[j+1] = 40

Complexity of Algorithms

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}



An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

10 30 40 40

1 2 3 4

i = 4 j = 3 key = 20

A[j] = 40 A[j+1] = 40

Complexity of Algorithms

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}



An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

10 30 40 40

1 2 3 4

i = 4 j = 3 key = 20

A[j] = 40 A[j+1] = 40

Complexity of Algorithms

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}



An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

10 30 40 40

1 2 3 4

i = 4 j = 2 key = 20

A[j] = 30 A[j+1] = 40

Complexity of Algorithms

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}



An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

10 30 40 40

1 2 3 4

i = 4 j = 2 key = 20

A[j] = 30 A[j+1] = 40

Complexity of Algorithms

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}



An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

10 30 30 40

1 2 3 4

i = 4 j = 2 key = 20

A[j] = 30 A[j+1] = 30

Complexity of Algorithms

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}



An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

10 30 30 40

1 2 3 4

i = 4 j = 2 key = 20

A[j] = 30 A[j+1] = 30

Complexity of Algorithms

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}



An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

10 30 30 40

1 2 3 4

i = 4 j = 1 key = 20

A[j] = 10 A[j+1] = 30

Complexity of Algorithms

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}



An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

10 30 30 40

1 2 3 4

i = 4 j = 1 key = 20

A[j] = 10 A[j+1] = 30

Complexity of Algorithms

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}



An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

10 20 30 40

1 2 3 4

i = 4 j = 1 key = 20

A[j] = 10 A[j+1] = 20

Complexity of Algorithms

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}



An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

10 20 30 40

1 2 3 4

i = 4 j = 1 key = 20

A[j] = 10 A[j+1] = 20

Complexity of Algorithms

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

} Done!



Analyzing algorithms

Complexity of Algorithms



Analyzing algorithms

� Analyzing an algorithm

– Analyzing an algorithm has come to mean predicting the 

resources that the algorithm requires. 

– Main resources are computational time and memory

– Most often it is computational time that we want to 

measure.

Complexity of Algorithms

measure.

– By analyzing several candidate algorithms for a problem, a 

most efficient one can be easily identified. 



Analyzing algorithms

� The time taken by the INSERTION-SORT procedure 

depends on 

– The size of the input: sorting a thousand numbers takes 

longer than sorting three numbers. 

– How the numbers nearly sorted they already are.

� The time taken by an algorithm grows with the size of 

Complexity of Algorithms

� The time taken by an algorithm grows with the size of 

the input

� It is traditional to describe the running time of a 

program as a function of the size of its input. 



Analyzing algorithms

� Input size

– For many problems, the most natural measure is the number 

of items in the input—for example, the array size n for 

sorting.

– Sometimes, it is more appropriate to describe the size of the 

input with two numbers rather than one. 

Complexity of Algorithms

input with two numbers rather than one. 

� For instance, if the input to an algorithm is a graph, the input size 

can be described by the numbers of vertices and edges in the graph. 



Analyzing algorithms

� Running time

– The running time of an algorithm on a particular input is 

the number of primitive operations or “steps” executed.

– It is machine-independent.

Complexity of Algorithms



Analyzing Insertion Sort

� We start by presenting the time cost of each statement 

and the number of times each statement is executed.

Complexity of Algorithms



Analyzing Insertion Sort

� Where,

– ci : the time cost of ith the statement

– j = 2, 3, . . . , n, where n = length[A]

– tj : the number of times the while loop test in line 5 is 

executed for that value of j.

– T (n) : the running time of algorithm

Complexity of Algorithms

– T (n) : the running time of algorithm

� Even for inputs of a given size, an algorithm’s running time 

may depend on which input of that size is given.



Analyzing Insertion Sort

� Best case

– The best case occurs if the array is already sorted, 

– tj = 1 for j = 2, 3, . . . , n, inner loop body never executed

– The best-case running time is:

Complexity of Algorithms

– T(n) can be expressed as an + b for constants a and b that 

depend on the statement costs ci

– It is thus a linear function of n.



Analyzing Insertion Sort

� Worst case

– tj = j for j = 2, 3, . . . , n, inner loop body executed for all 

previous elements 

Complexity of Algorithms

– T(n) can be expressed as an2 + bn + c for constants a, b, and 

c that again depend on the statement costs ci ; 

– It is thus a quadratic function of n.



Analyzing algorithms

� In analyzing algorithm, we usually concentrate on 

finding only the worst-case running time, that is the 

longest running time for any input of size n.

� The reasons for using worst-case running time:

– The worst-case running time of an algorithm is an upper 

bound on the running time for any input. Knowing it gives 

Complexity of Algorithms

bound on the running time for any input. Knowing it gives 

us a guarantee that the algorithm will never take any longer.

– For some algorithms, the worst case occurs frequently.



Order of Growth

Complexity of Algorithms



Order of Growth

� Asymptotic performance

– How does algorithm behave as the problem size gets very 

large?

� Running time

� Memory/storage requirements

� Order of growth / rate of growth

Complexity of Algorithms

� Order of growth / rate of growth

– is the interesting measure



O-Notation

� O-notation provides an asymptotic upper bound.

� When we use O-notation to bound the worst-case 

running time of an algorithm, we have a bound on the 

running time of the algorithm on every input.

� Definition of Big-O Notation

Complexity of Algorithms

– O(g(n)) = { f (n) : there exist positive constants c and n0

such that 0 ≤ f(n) ≤ c ⋅ g(n) for all n ≥ n0 }

� We write f (n) = O(g(n)) to indicate that a function f(n) 

is a member of the set O(g(n)).



O-Notation

� The worst-case running time of INSERTION-SORT is 

an2 + bn + c for constants a, b, and c that again depend 

on the statement costs ci

� For simplicity we ignore constant factors because they 

are less significant than the rate of growth in 

determining computational efficiency for large inputs

Complexity of Algorithms

determining computational efficiency for large inputs

� Therefore we consider only n2 as rate of growth or 

order of growth

� Thus, we say Insertion-Sort’s (worst-case) running 

time is O(n2)

– Properly we should say run time is in O(n2)



O-Notation

� The value of f (n) always lies on or below cg(n).

Complexity of Algorithms



Ω-Notation

� Ω-notation provides an asymptotic lower bound.

� Definition of Big-Ω Notation

– Ω(g(n)) = { f (n) : there exist positive constants c and n0

such that 0 ≤ c ⋅ g(n) ≤ f(n) for all n ≥ n0 }

Complexity of Algorithms



Θ-Notation

� Definition of Big-Θ Notation

– Θ(g(n)) = { f (n) : there exist positive constants c and n0

such that 0 ≤ c1 ⋅ g(n) ≤ f(n) ≤ c2 ⋅ g(n) for all n ≥ n0 }

� function f (n) belongs to the set (g(n)) if there exist 

positive constants c1 and c2 such that it can be 

“sandwiched” between c ⋅ g(n) and c ⋅ g(n), for 

Complexity of Algorithms

“sandwiched” between c1 ⋅ g(n) and c2 ⋅ g(n), for 

sufficiently large n.

� Because (g(n)) is a set, we could write f(n) ∈ (g(n)) to 

indicate that f(n) is a member of (g(n)). 

� Instead, we will usually write f(n) = (g(n)) to express 

the same notion.



Θ-Notation

Complexity of Algorithms



Complexity of Algorithms

Complexity of Algorithms



Complexity of Algorithms

� Polynomial-time algorithm

– An algorithm is a polynomial-time algorithm if its 

complexity is O(g(n)), where g(n) is a polynomial function 

of n.

� A polynomial function of degree k can be defined as 

follows:

Complexity of Algorithms

follows:

� where ak > 0 and aj ≥ 0, ∀1 ≤ j ≤ k − 1. 

� The corresponding algorithm has a polynomial 

complexity of O(nk).



Complexity of Algorithms

� Exponential-time algorithm

– An algorithm is an exponential-time algorithm if its 

complexity is O(cn), where c is a real constant strictly 

superior to 1.

Complexity of Algorithms



Complexity of Algorithms

� Search time of an algorithm as a function of the 

problem size using different complexities

Complexity of Algorithms



References

Complexity of Algorithms



References

� Thomas H. Cormen et al., Introduction to 

Algorithms, Second Edition, The MIT Press, 2001. 

(Chapter 1-3)

� El-Ghazali Talbi, Metaheuristics : From Design to 

Implementation, John Wiley & Sons, 2009. 

(Chapter 1)

Complexity of Algorithms

(Chapter 1)



The End

Complexity of Algorithms


