In the name of God

Part 2. Complexity Theory

2.1. Complexity of Algorithms

Spring 2010
Instructor: Dr. Masoud Yaghini

Outline

- Algorithms
- Analyzing algorithms
- Order of Growth
- Complexity of Algorithms
- References

Algorithms

Algorithms

- Algorithm
- An algorithm is any well-defined computational procedure that takes some values as input and produces some values as output.
- Computational problem
- An algorithm is a tool for solving a well-specified computational problem.
- Correct algorithm
- An algorithm is said to be correct if, for every input instance, it halts with the correct output.

Pseudocode

- Pseudocode
- The algorithms are typically described as programs written in a pseudocode that is similar in many respects to C, Pascal, or Java.
- Difference between pseudocode and real code
- Pseudocode employs an expressive method that is most clear and concise to specify a given algorithm
- Pseudocode is not typically concerned with issues of software engineering, such as data abstraction, modularity, and error handling

Pseudocode

- Indentation indicates block structure.
- The looping constructs while, for, and repeat and
- The conditional constructs if, then, and else
- There is a symbol that indicates a comment.
- An assignment of the form $i \leftarrow e$ assigns variables i the value of expression e
- A multiple assignment of the form $i \leftarrow j \leftarrow e$ assigns to both variables i and j the value of expression e
- Array elements are accessed by specifying the array name followed by the index in square brackets

An Example: Insertion Sort

- Example: sorting problem
- Input: A sequence of n numbers $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$.
- Output: A permutation (reordering) $\left\langle a_{1}{ }_{l}, a^{\prime}{ }_{2}, \ldots, a^{\prime}{ }_{n}\right\rangle$ of the input sequence such that $a^{\prime}{ }_{1} \leq a^{\prime}{ }_{2} \leq \ldots \leq a_{n}^{\prime}{ }^{\prime}$
- Insertion sort algorithm
- Insertion sort is an efficient algorithm for sorting a small number of elements.
- The numbers that we wish to sort are also known as the keys.
- Insertion sort works the way many people sort a hand of playing cards.

An Example: Insertion Sort

- Sorting a hand of cards using insertion sort

An Example: Insertion Sort

- Input: an array $A[1 \ldots n]$ containing a sequence of length n that is to be sorted.

Insertion-Sort (A)
1 for $j \leftarrow 2$ to length[A]
2 do $k e y \leftarrow A[j]$
$3 \triangleright$ Insert $A[j]$ into the sorted sequence $A[1 \ldots j-1]$.
$4 \quad i \leftarrow j-1$
$5 \quad$ while $i>0$ and $A[i]>k e y$
$6 \quad$ do $A[i+1] \leftarrow A[i]$
$i \leftarrow i-1$
$A[i+1] \leftarrow k e y$

An Example: Insertion Sort

- The operation of INSERTION-SORT on the array $A=$ <5, 2, 4, 6, 1, 3>.

(a) | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | 2 | 4 | 6 | 1 | 3 |
| $\boldsymbol{u}(4)$ | | | | | |

(b) | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 5 | 4 | 6 | 1 | 3 |
| | | 4 | | | |
| | | | | | |

(c) | 1 | 2 | 3 | 4 | 5 | 6 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 4 | 5 | 6 | 1 | 3 | |
| | | | | | | |
| | | | | | | |

(d) | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 4 | 5 | 6 | 1 | 3 |

(e) | 1 | 2 | 3 | 4 | 5 | 6 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 4 | 5 | 6 | 3 | |
| | | | | 4 | 4 | 4 |

(f) | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 | 5 | 6 |

An Example: Insertion Sort

```
InsertionSort (A, n) \{
    for \(i=2\) to \(n\) \{
        key = A[i]
        j = i - 1 ;
        while (j > 0) and (A[j] > key) \{
        A[j+1] \(=A[j]\)
        j \(=\) j - 1
        \}
        A \([\mathrm{j}+1]=\) key
    \}
\}
```


An Example: Insertion Sort

Complexity of Algorithms

An Example: Insertion Sort

30	10	40	20
1	2	3	4

$$
\begin{array}{ll}
\mathbf{i}=\mathbf{2} \quad \mathbf{j}=1 & \text { key =10 } \\
\mathrm{A}[\mathrm{j}]=30 & A[\mathrm{j}+1]=10 \\
\hline
\end{array}
$$

```
InsertionSort (A, n) \{
    for \(i=2\) to \(n\) \{
        key \(=\mathrm{A}[\mathrm{i}]\)
        j = i -1 ;
        while ( \(j>0\) ) and ( \(\mathrm{A}[\mathrm{j}]>\) key) \(\{\)
        \(A[j+1]=A[j]\)
                \(j=j-1\)
        \}
        \(\mathrm{A}[\mathrm{j}+1]=\) key
        \}
        \}
```


An Example: Insertion Sort

30	30	40	20
1	2	3	4

$$
\begin{array}{ll}
\mathbf{i}=\mathbf{2} \quad \mathbf{j}=1 & \text { key }=10 \\
\mathrm{~A}[\mathrm{j}]=\mathbf{3 0} & A[j+1]=30
\end{array}
$$

```
InsertionSort (A, n) \{
    for \(i=2\) to \(n\) \{
        key \(=\mathrm{A}[\mathrm{i}]\)
        j = i -1 ;
        while ( \(j>0\) ) and \((A[j]>\) key) \(\{\)
                        \(A[j+1]=A[j]\)
                \(j=j-1\)
        \}
        \(\mathrm{A}[\mathrm{j}+1]=\) key
        \}
        \}
```


An Example: Insertion Sort

30	30	40	20
1	2	3	4

$$
\begin{array}{ll}
\mathbf{i}=\mathbf{2} \quad \mathbf{j}=1 & \text { key }=10 \\
\mathrm{~A}[\mathrm{j}]=\mathbf{3 0} & \mathrm{A}[\mathrm{j}+1]=30
\end{array}
$$

```
InsertionSort (A, n) \{
            for \(i=2\) to \(n\) \{
                key \(=\mathrm{A}[\mathrm{i}]\)
                j = i -1 ;
        while ( \(j>0\) ) and \((A[j]>\) key) \(\{\)
                        \(A[j+1]=A[j]\)
                \(j=j-1\)
            \}
            \(\mathrm{A}[\mathrm{j}+1]=\) key
            \}
\}
```


An Example: Insertion Sort

30	30	40	20
1	2	3	4

$$
\begin{array}{ll}
\mathbf{i}=\mathbf{2} \quad \mathbf{j}=\mathbf{0} & \text { key = 10 } \\
\mathrm{A}[\mathbf{j}]=\varnothing & A[\mathbf{j}+1]=30
\end{array}
$$

```
InsertionSort (A, n) \{
            for \(i=2\) to \(n\) \{
                        key \(=\mathrm{A}[\mathrm{i}]\)
                j = i - 1 ;
        while (j > 0) and (A[j] > key) \{
                        \(A[j+1]=A[j]\)
                        \(j=j-1\)
            \}
            \(A[j+1]=\) key
            \}
        \}
```


An Example: Insertion Sort

30	30	40	20
1	2	3	4

$$
\begin{array}{ll}
\mathbf{i}=\mathbf{2} \quad \mathbf{j}=0 & \text { key = 10 } \\
\mathrm{A}[\mathbf{j}]=\varnothing & A[\mathbf{j}+1]=30
\end{array}
$$

```
InsertionSort (A, n) \{
            for \(i=2\) to \(n\) \{
                key \(=\mathrm{A}[\mathrm{i}]\)
                j = i - 1 ;
                while ( \(j>0\) ) and \((A[j]>\) key) \(\{\)
                        \(A[j+1]=A[j]\)
                        \(j=j-1\)
            \}
        \(\mathrm{A}[\mathrm{j}+1]=\) key
    \}
\}
```


An Example: Insertion Sort

10	30	40	20
1	2	3	4

$$
\begin{array}{ll}
\mathbf{i}=\mathbf{2} & \mathbf{j}=0
\end{array} \quad \text { key = 10 }= \begin{cases}\mathrm{A}[\mathrm{j}]=\varnothing & A[\mathbf{j}+1]=10\end{cases}
$$

```
InsertionSort (A, n) \{
    for \(i=2\) to \(n\) \{
        key \(=\mathrm{A}[\mathrm{i}]\)
        j = i -1 ;
        while (j > 0) and (A[j] > key) \{
                        \(A[j+1]=A[j]\)
                        \(j=j-1\)
        \}
        \(A[j+1]=\) key
    \}
\}
```


An Example: Insertion Sort

10	30	40	20
1	2	3	4

$$
\begin{array}{ll}
\mathbf{i}=\mathbf{3} & \mathbf{j}=\mathbf{0}
\end{array} \quad \text { key = 10 } \quad \begin{array}{ll}
\mathrm{A}[\mathrm{j}]=\varnothing & A[\mathbf{j}+1]=10
\end{array}
$$

```
InsertionSort (A, n) \{
    for \(i=2\) to \(n\{\)
        key \(=\mathrm{A}[\mathrm{i}]\)
        j = i - 1 ;
        while ( \(j>0\) ) and ( \(\mathrm{A}[\mathrm{j}]>\) key) \(\{\)
                        \(A[j+1]=A[j]\)
                        \(j=j-1\)
        \}
        \(\mathrm{A}[\mathrm{j}+1]=\) key
    \}
\}
```


An Example: Insertion Sort

10	30	40	20
1	2	3	4

$$
\begin{array}{ll}
\mathbf{i}=3 & \mathbf{j}=0
\end{array} \quad \text { key = 40 }= \begin{cases}\mathrm{A}[\mathrm{j}]=\varnothing & A[\mathrm{j}+1]=10\end{cases}
$$

```
InsertionSort (A, n) \{
    for \(i=2\) to \(n\) \{
        key \(=\mathrm{A}[\mathrm{i}]\)
        j = i - 1 ;
        while \((j>0)\) and \((A[j]>\) key) \(\{\)
                        \(A[j+1]=A[j]\)
                        \(j=j-1\)
        \}
        \(\mathrm{A}[\mathrm{j}+1]=\) key
    \}
\}
```


An Example: Insertion Sort

10	30	40	20
1	2	3	4

$$
\begin{array}{ll}
\mathbf{i}=\mathbf{3} & \mathbf{j}=0
\end{array} \quad \text { key = 40 }= \begin{cases}\mathrm{A}[\mathrm{j}]=\varnothing & A[\mathbf{j}+1]=10\end{cases}
$$

```
InsertionSort (A, n) \{
    for \(i=2\) to \(n\) \{
        key \(=\mathrm{A}[\mathrm{i}]\)
        \(j=i-1\);
        while \((j>0)\) and \((A[j]>\) key) \(\{\)
        \(A[j+1]=A[j]\)
        \(j=j-1\)
        \}
        \(\mathrm{A}[\mathrm{j}+1]=\) key
        \}
        \}
```


An Example: Insertion Sort

10	30	40	20
1	2	3	4

$$
\begin{array}{lll}
\mathbf{i}=3 & \mathbf{j}=2 & \text { key }=40 \\
\mathrm{~A}[\mathrm{j}]=30 & A[\mathrm{j}+1]=40
\end{array}
$$

```
InsertionSort (A, n) \{
    for \(i=2\) to \(n\) \{
        key \(=\mathrm{A}[\mathrm{i}]\)
        j = i - 1 ;
        while ( \(j>0\) ) and \((A[j]>\) key) \(\{\)
                        \(A[j+1]=A[j]\)
                        \(j=j-1\)
        \}
        \(\mathrm{A}[\mathrm{j}+1]=\) key
    \}
\}
```


An Example: Insertion Sort

10	30	40	20
1	2	3	4

$$
\begin{array}{lll}
\mathbf{i}=3 & \mathbf{j}=2 & \text { key }=40 \\
\mathrm{~A}[\mathrm{j}]=30 & A[\mathrm{j}+1]=40
\end{array}
$$

$$
\begin{aligned}
& \text { InsertionSort }(A, n)\{ \\
& \text { for } i=2 \text { to } n\{ \\
& \text { key }=A[i] \\
& j=i-1 ; \\
& \text { while }(j>0) \text { and }(A[j]>\text { key })\{ \\
& \\
& \quad A[j+1]=A[j] \\
& \quad j=j-1 \\
& \\
& \quad \begin{array}{l}
A[j+1]=\text { key } \\
\}
\end{array} \\
& \}
\end{aligned}
$$

An Example: Insertion Sort

10	30	40	20
1	2	3	4

$$
\begin{array}{lll}
\mathrm{i}=3 & \mathrm{j}=2 & \mathrm{key}=40 \\
\mathrm{~A}[\mathrm{j}]=30 & \mathrm{~A}[\mathrm{j}+1]=40
\end{array}
$$

$$
\begin{aligned}
& \text { InsertionSort }(A, n)\{ \\
& \text { for } i=2 \text { to } n\{ \\
& \text { key }=A[i] \\
& j=i-1 ; \\
& \text { while }(j>0) \text { and }(A[j]>\text { key })\{ \\
& \\
& \quad A[j+1]=A[j] \\
& \quad j=j-1 \\
& \\
& \quad \begin{array}{l}
A[j+1]=\text { key } \\
\}
\end{array} \\
& \}
\end{aligned}
$$

An Example: Insertion Sort

10	30	40	20
1	2	3	4

$$
\begin{array}{ll}
\mathbf{i}=\mathbf{4} \quad \mathbf{j}=2 & \text { key }=40 \\
A[j]=30 & A[j+1]=40
\end{array}
$$

```
InsertionSort (A, n) \{
    for \(i=2\) to \(n\) \{
        key \(=\mathrm{A}[\mathrm{i}]\)
        j = i - 1 ;
        while ( \(j>0\) ) and \((A[j]>\) key) \(\{\)
                        \(A[j+1]=A[j]\)
                        \(j=j-1\)
        \}
        \(A[j+1]=\) key
        \}
        \}
```


An Example: Insertion Sort

10	30	40	20
1	2	3	4

$$
\begin{array}{ll}
\mathbf{i}=\mathbf{4} \quad \mathbf{j}=2 & \text { key }=20 \\
\mathrm{~A}[\mathrm{j}]=30 & A[\mathbf{j}+1]=40
\end{array}
$$

```
InsertionSort (A, n) \{
    for \(i=2\) to \(n\) \{
        key \(=\mathrm{A}[\mathrm{i}]\)
        j = i - 1 ;
        while \((j>0)\) and \((A[j]>\) key) \(\{\)
                        \(A[j+1]=A[j]\)
                        \(j=j-1\)
        \}
        \(A[j+1]=\) key
    \}
\}
```


An Example: Insertion Sort

10	30	40	20
1	2	3	4

$$
\begin{array}{ll}
\mathbf{i}=\mathbf{4} \quad \mathbf{j}=2 & \text { key }=20 \\
\mathrm{~A}[\mathrm{j}]=30 & A[\mathbf{j}+1]=40
\end{array}
$$

```
InsertionSort (A, n) \{
    for \(i=2\) to \(n\) \{
        key \(=\mathrm{A}[\mathrm{i}]\)
        \(j=i-1\);
        while \((j>0)\) and \((A[j]>\) key) \(\{\)
        \(A[j+1]=A[j]\)
        \(j=j-1\)
        \}
        \(A[j+1]=\) key
        \}
        \}
```


An Example: Insertion Sort

10	30	40	20
1	2	3	4

$$
\begin{array}{ll}
\mathrm{i}=\mathbf{4} \quad \mathrm{j}=3 & \mathrm{key}=20 \\
\mathrm{~A}[\mathrm{j}]=40 & A[\mathrm{j}+1]=20 \\
\hline
\end{array}
$$

```
InsertionSort (A, n) \{
    for \(i=2\) to \(n\) \{
        key \(=\mathrm{A}[\mathrm{i}]\)
        \(j=i-1\);
        while ( \(j>0\) ) and \((A[j]>\) key) \(\{\)
                        \(A[j+1]=A[j]\)
                        \(j=j-1\)
        \}
        \(\mathrm{A}[\mathrm{j}+1]=\) key
    \}
\}
```


An Example: Insertion Sort

10	30	40	20
1	2	3	4

$$
\begin{array}{ll}
\mathbf{i}=\mathbf{4} \quad \mathbf{j}=3 & \text { key }=20 \\
\mathrm{~A}[\mathrm{j}]=40 & A[\mathrm{j}+1]=20 \\
\hline
\end{array}
$$

```
InsertionSort (A, n) \{
    for \(i=2\) to \(n\) \{
        key \(=\mathrm{A}[\mathrm{i}]\)
        \(j=1-1\);
        while \((j>0)\) and \((A[j]>\) key) \(\{\)
        \(\mathrm{A}[\mathrm{j}+1]=\mathrm{A}[\mathrm{j}]\)
        \(j=j-1\)
        \}
        \(A[j+1]=\) key
        \}
        \}
```


An Example: Insertion Sort

10	30	40	40
1	2	3	4

$$
\begin{array}{lll}
\mathbf{i}=\mathbf{4} & \mathbf{j}=3 & \text { key }=20 \\
\mathrm{~A}[\mathrm{j}]=40 & A[\mathrm{j}+1]=40
\end{array}
$$

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
                        A[j+1] = A[j]
                j = j-1
        }
        A[j+1] = key
        }
        }
```


An Example: Insertion Sort

10	30	40	40
1	2	3	4

$$
\begin{array}{lll}
\mathbf{i}=\mathbf{4} & \mathbf{j}=3 & \text { key }=20 \\
\mathrm{~A}[\mathrm{j}]=40 & A[\mathrm{j}+1]=40
\end{array}
$$

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
                        A[j+1] = A[j]
                j = j-1
        }
        A[j+1] = key
        }
        }
```


An Example: Insertion Sort

10	30	40	40
1	2	3	4

$$
\begin{array}{lll}
\mathbf{i}=\mathbf{4} & \mathbf{j}=3 & \text { key }=20 \\
\mathrm{~A}[\mathrm{j}]=40 & A[\mathrm{j}+1]=40
\end{array}
$$

$$
\begin{aligned}
& \text { InsertionSort (A, n) \{ } \\
& \text { for } i=2 \text { to } n \text { \{ } \\
& \text { key }=\mathrm{A}[\mathrm{i}] \\
& \text { j = i - } 1 \text {; } \\
& \text { while (j > 0) and (A[j] > key) \{ } \\
& A[j+1]=A[j] \\
& j=j-1 \\
& \text { \} } \\
& A[j+1]=\text { key } \\
& \text { \} } \\
& \text { \} }
\end{aligned}
$$

An Example: Insertion Sort

10	30	40	40
1	2	3	4

$$
\begin{array}{ll}
\mathbf{i}=\mathbf{4} \quad \mathbf{j}=2 & \text { key }=20 \\
\mathrm{~A}[\mathrm{j}]=30 & A[\mathbf{j}+1]=40
\end{array}
$$

$$
\begin{aligned}
& \text { InsertionSort (A, n) \{ } \\
& \text { for } i=2 \text { to } n \text { \{ } \\
& \text { key }=\mathrm{A}[\mathrm{i}] \\
& j=i-1 \text {; } \\
& \text { while (} j>0 \text {) and }(A[j]>\text { key) }\{ \\
& A[j+1]=A[j] \\
& j=j-1 \\
& \text { \} } \\
& A[j+1]=\text { key } \\
& \text { \} } \\
& \text { \} }
\end{aligned}
$$

An Example: Insertion Sort

10	30	40	40
1	2	3	4

$$
\begin{array}{ll}
\mathbf{i}=\mathbf{4} \quad \mathbf{j}=2 & \text { key }=20 \\
\mathrm{~A}[\mathrm{j}]=30 & A[\mathbf{j}+1]=40
\end{array}
$$

```
InsertionSort (A, n) \{
    for \(i=2\) to \(n\) \{
        key \(=\mathrm{A}[\mathrm{i}]\)
        \(j=1-1\);
        while \((j>0)\) and \((A[j]>\) key) \(\{\)
        \(\mathrm{A}[\mathrm{j}+1]=\mathrm{A}[\mathrm{j}]\)
        \(j=j-1\)
        \}
        \(A[j+1]=\) key
        \}
        \}
```


An Example: Insertion Sort

10	30	30	40
1	2	3	4

$$
\begin{array}{ll}
\mathbf{i}=\mathbf{4} \quad \mathbf{j}=2 & \text { key }=20 \\
\mathrm{~A}[\mathrm{j}]=30 & A[\mathrm{j}+1]=30
\end{array}
$$

```
InsertionSort (A, n) \{
    for \(i=2\) to \(n\) \{
        key \(=\mathrm{A}[\mathrm{i}]\)
        \(j=i-1\);
        while \((j>0)\) and \((A[j]>\) key) \(\{\)
                        \(\mathrm{A}[\mathrm{j}+1]=\mathrm{A}[\mathrm{j}]\)
                \(j=j-1\)
        \}
        \(\mathrm{A}[\mathrm{j}+1]=\) key
        \}
        \}
```


An Example: Insertion Sort

10	30	30	40
1	2	3	4

$$
\begin{array}{ll}
\mathbf{i}=\mathbf{4} \quad \mathbf{j}=2 & \text { key }=20 \\
\mathrm{~A}[\mathrm{j}]=30 & A[\mathrm{j}+1]=30
\end{array}
$$

```
InsertionSort (A, n) \{
    for \(i=2\) to \(n\) \{
        key \(=\mathrm{A}[\mathrm{i}]\)
        \(j=1-1\);
        while \((j>0)\) and \((A[j]>\) key) \(\{\)
        \(A[j+1]=A[j]\)
        \(j=j-1\)
        \}
        \(\mathrm{A}[\mathrm{j}+1]=\) key
        \}
        \}
```


An Example: Insertion Sort

10	30	30	40
1	2	3	4

$$
\begin{array}{ll}
\mathbf{i}=\mathbf{4} \quad \mathbf{j}=1 & \text { key }=20 \\
\mathrm{~A}[\mathrm{j}]=10 & A[\mathbf{j}+1]=30
\end{array}
$$

```
InsertionSort (A, n) \{
            for \(i=2\) to \(n\) \{
                        key \(=\mathrm{A}[\mathrm{i}]\)
                \(j=i-1\);
        while ( \(j>0\) ) and \((A[j]>\) key) \(\{\)
                        \(A[j+1]=A[j]\)
                        \(j=j-1\)
            \}
        \(\mathrm{A}[\mathrm{j}+1]=\) key
        \}
\}
```


An Example: Insertion Sort

10	30	30	40
1	2	3	4

$$
\begin{array}{ll}
\mathbf{i}=\mathbf{4} \quad \mathbf{j}=1 & \text { key }=20 \\
\mathrm{~A}[\mathrm{j}]=10 & A[\mathbf{j}+1]=30
\end{array}
$$

```
InsertionSort (A, n) \{
            for \(i=2\) to \(n\) \{
                key \(=\mathrm{A}[\mathrm{i}]\)
                j = i -1 ;
                while \((j>0)\) and \((A[j]>\) key) \(\{\)
                        \(A[j+1]=A[j]\)
                        \(j=j-1\)
            \}
        \(\mathrm{A}[\mathrm{j}+1]=\mathrm{key}\)
    \}
\}
```


An Example: Insertion Sort

10	20	30	40
1	2	3	4

$$
\begin{array}{ll}
\mathbf{i}=4 \quad \mathbf{j}=1 & \text { key }=20 \\
A[\mathbf{j}]=10 & A[\mathbf{j}+1]=20
\end{array}
$$

```
InsertionSort (A, n) \{
            for \(i=2\) to \(n\) \{
                key = Ali]
                j = i - 1 ;
                while (j > 0) and (A[j] > key) \{
                        \(A[j+1]=A[j]\)
                        \(j=j-1\)
            \}
                        \(\mathrm{A}[\mathrm{j}+1]=\) key
            \}
\}
```


An Example: Insertion Sort

10	20	30	40
1	2	3	4

$$
\begin{array}{ll}
\mathrm{i}=\mathbf{4} \quad \mathrm{j}=1 & \mathrm{key}=20 \\
\mathrm{~A}[\mathrm{j}]=10 & A[\mathrm{j}+1]=20
\end{array}
$$

```
InsertionSort (A, n) \{
    for \(i=2\) to \(n\) \{
        key \(=\mathrm{A}[\mathrm{i}]\)
        j = i - 1 ;
        while \((j>0)\) and \((A[j]>\) key) \(\{\)
        \(A[j+1]=A[j]\)
        \(j=j-1\)
        \}
        \(\mathrm{A}[\mathrm{j}+1]=\) key
        \}
        \}
            Done!
```


Analyzing algorithms

Analyzing algorithms

- Analyzing an algorithm
- Analyzing an algorithm has come to mean predicting the resources that the algorithm requires.
- Main resources are computational time and memory
- Most often it is computational time that we want to measure.
- By analyzing several candidate algorithms for a problem, a most efficient one can be easily identified.

Analyzing algorithms

- The time taken by the INSERTION-SORT procedure depends on
- The size of the input: sorting a thousand numbers takes longer than sorting three numbers.
- How the numbers nearly sorted they already are.
- The time taken by an algorithm grows with the size of the input
- It is traditional to describe the running time of a program as a function of the size of its input.

Analyzing algorithms

- Input size
- For many problems, the most natural measure is the number of items in the input-for example, the array size n for sorting.
- Sometimes, it is more appropriate to describe the size of the input with two numbers rather than one.
- For instance, if the input to an algorithm is a graph, the input size can be described by the numbers of vertices and edges in the graph.

Analyzing algorithms

- Running time
- The running time of an algorithm on a particular input is the number of primitive operations or "steps" executed.
- It is machine-independent.

Analyzing Insertion Sort

- We start by presenting the time cost of each statement and the number of times each statement is executed.

InSERTION-SORT (A)	cost	times	
1	for $j \leftarrow 2$ to length $[A]$	c_{1}	n
2	do key $\leftarrow A[j]$	c_{2}	$n-1$
3	\triangleright Insert $A[j]$ into the sorted		
	sequence $A[1 \ldots j-1]$.	0	$n-1$
4	$i \leftarrow j-1$	c_{4}	$n-1$
5	while $i>0$ and $A[i]>k e y$	c_{5}	$\sum_{j=2}^{n} t_{j}$
6	do $A[i+1] \leftarrow A[i]$	c_{6}	$\sum_{j=2}^{n}\left(t_{j}-1\right)$
7	$i \leftarrow i-1$	c_{7}	$\sum_{j=2}^{n}\left(t_{j}-1\right)$
8	$A[i+1] \leftarrow k e y$	c_{8}	$n-1$

Analyzing Insertion Sort

- Where,
$-c_{i}$: the time cost of i th the statement
$-j=2,3, \ldots, n$, where $n=$ length[A]
$-t_{j}$: the number of times the while loop test in line 5 is executed for that value of j.
$-T(n)$: the running time of algorithm

$$
\begin{aligned}
T(n)= & c_{1} n+c_{2}(n-1)+c_{4}(n-1)+c_{5} \sum_{j=2}^{n} t_{j}+c_{6} \sum_{j=2}^{n}\left(t_{j}-1\right) \\
& +c_{7} \sum_{j=2}^{n}\left(t_{j}-1\right)+c_{8}(n-1) .
\end{aligned}
$$

- Even for inputs of a given size, an algorithm's running time may depend on which input of that size is given.

Analyzing Insertion Sort

- Best case

- The best case occurs if the array is already sorted,
$-t_{j}=1$ for $j=2,3, \ldots, n$, inner loop body never executed
- The best-case running time is:

$$
\begin{aligned}
T(n) & =c_{1} n+c_{2}(n-1)+c_{4}(n-1)+c_{5}(n-1)+c_{8}(n-1) \\
& =\left(c_{1}+c_{2}+c_{4}+c_{5}+c_{8}\right) n-\left(c_{2}+c_{4}+c_{5}+c_{8}\right) .
\end{aligned}
$$

- $T(n)$ can be expressed as $\boldsymbol{a} \boldsymbol{n}+\boldsymbol{b}$ for constants a and b that depend on the statement costs c_{i}
- It is thus a linear function of n.

Analyzing Insertion Sort

- Worst case
$-t_{j}=j$ for $j=2,3, \ldots, n$, inner loop body executed for all previous elements

$$
\begin{aligned}
T(n)= & c_{1} n+c_{2}(n-1)+c_{4}(n-1)+c_{5}\left(\frac{n(n+1)}{2}-1\right) \\
& +c_{6}\left(\frac{n(n-1)}{2}\right)+c_{7}\left(\frac{n(n-1)}{2}\right)+c_{8}(n-1) \\
= & \left(\frac{c_{5}}{2}+\frac{c_{6}}{2}+\frac{c_{7}}{2}\right) n^{2}+\left(c_{1}+c_{2}+c_{4}+\frac{c_{5}}{2}-\frac{c_{6}}{2}-\frac{c_{7}}{2}+c_{8}\right) n \\
& -\left(c_{2}+c_{4}+c_{5}+c_{8}\right) .
\end{aligned}
$$

- $T(n)$ can be expressed as $a n^{2}+b n+c$ for constants a, b, and c that again depend on the statement costs c_{i};
- It is thus a quadratic function of n.

Analyzing algorithms

- In analyzing algorithm, we usually concentrate on finding only the worst-case running time, that is the longest running time for any input of size n.
- The reasons for using worst-case running time:
- The worst-case running time of an algorithm is an upper bound on the running time for any input. Knowing it gives us a guarantee that the algorithm will never take any longer.
- For some algorithms, the worst case occurs frequently.

Order of Growth

Order of Growth

- Asymptotic performance
- How does algorithm behave as the problem size gets very large?
- Running time
- Memory/storage requirements
- Order of growth / rate of growth
- is the interesting measure

O-Notation

- O-notation provides an asymptotic upper bound.
- When we use O-notation to bound the worst-case running time of an algorithm, we have a bound on the running time of the algorithm on every input.
- Definition of Big- O Notation
- $O(g(n))=\left\{f(n):\right.$ there exist positive constants c and n_{0} such that $0 \leq f(n) \leq c \cdot g(n)$ for all $\left.n \geq n_{0}\right\}$
- We write $f(n)=O(g(n))$ to indicate that a function $f(n)$ is a member of the set $O(g(n))$.

O-Notation

- The worst-case running time of INSERTION-SORT is $a n^{2}+b n+c$ for constants a, b, and c that again depend on the statement costs c_{i}
- For simplicity we ignore constant factors because they are less significant than the rate of growth in determining computational efficiency for large inputs
- Therefore we consider only \boldsymbol{n}^{2} as rate of growth or order of growth
- Thus, we say Insertion-Sort's (worst-case) running time is $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$
- Properly we should say run time is in $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$

O-Notation

- The value of $f(n)$ always lies on or below $c g(n)$.

Ω-Notation

- Ω-notation provides an asymptotic lower bound.
- Definition of Big- Ω Notation
$-\Omega(g(n))=\left\{f(n)\right.$: there exist positive constants c and n_{0} such that $0 \leq c \cdot g(n) \leq f(n)$ for all $\left.n \geq n_{0}\right\}$

$\boldsymbol{\Theta}$-Notation

- Definition of Big- Θ Notation
$-\Theta(g(n))=\left\{f(n)\right.$: there exist positive constants c and n_{0} such that $0 \leq c_{1} \cdot g(n) \leq f(n) \leq c_{2} \cdot g(n)$ for all $\left.n \geq n_{0}\right\}$
- function $f(n)$ belongs to the set $(g(n))$ if there exist positive constants c_{1} and c_{2} such that it can be "sandwiched" between $c_{1} \cdot g(n)$ and $c_{2} \cdot g(n)$, for sufficiently large n.
- Because $(g(n))$ is a set, we could write $f(n) \in(g(n))$ to indicate that $f(n)$ is a member of $(g(n))$.
- Instead, we will usually write $f(n)=(g(n))$ to express the same notion.

Complexity of Algorithms

$\boldsymbol{\Theta}$-Notation

Complexity of Algorithms

Complexity of Algorithms

- Polynomial-time algorithm
- An algorithm is a polynomial-time algorithm if its complexity is $O(g(n))$, where $g(n)$ is a polynomial function of n.
- A polynomial function of degree k can be defined as follows:

$$
p(n)=a_{k} \cdot n^{k}+\cdots+a_{j} \cdot n^{j}+\cdots+a_{1} \cdot n+a_{0}
$$

- where $a_{k}>0$ and $a_{j} \geq 0, \forall 1 \leq j \leq k-1$.
- The corresponding algorithm has a polynomial complexity of $O\left(n^{k}\right)$.

Complexity of Algorithms

- Exponential-time algorithm
- An algorithm is an exponential-time algorithm if its complexity is $O\left(c^{n}\right)$, where c is a real constant strictly superior to 1 .

Complexity of Algorithms

- Search time of an algorithm as a function of the problem size using different complexities

Complexity	Size $=10$	Size $=20$	Size $=30$	Size $=40$	Size $=50$
$O(x)$	0.00001 s	0.00002 s	0.00003 s	0.00004 s	0.00005 s
$O\left(x^{2}\right)$	0.0001 s	0.0004 s	0.0009 s	0.0016 s	0.0025 s
$O\left(x^{5}\right)$	0.1 s	0.32 s	24.3 s	1.7 mn	5.2 mn
$O\left(2^{x}\right)$	0.001 s	1.0 s	17.9 mn	12.7 days	35.7 years
$O\left(3^{x}\right)$	0.059 s	58.0 mn	6.5 years	3855 centuries	2×10^{8} centuries

Complexity of Algorithms

References

References

- Thomas H. Cormen et al., Introduction to Algorithms, Second Edition, The MIT Press, 2001. (Chapter 1-3)
- El-Ghazali Talbi, Metaheuristics : From Design to Implementation, John Wiley \& Sons, 2009. (Chapter 1)

The End

