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Algorithms

� Algorithm

– An algorithm is any well-defined computational procedure 

that takes some values as input and produces some values 

as output. 

� Computational problem

– An algorithm is a tool for solving a well-specified 
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– An algorithm is a tool for solving a well-specified 

computational problem.

� Correct algorithm

– An algorithm is said to be correct if, for every input 

instance, it halts with the correct output.



Pseudocode

� Pseudocode

– The algorithms are typically described as programs written 

in a pseudocode that is similar in many respects to C, 

Pascal, or Java.

� Difference between pseudocode and real code

– Pseudocode employs an expressive method that is most 
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– Pseudocode employs an expressive method that is most 

clear and concise to specify a given algorithm

– Pseudocode is not typically concerned with issues of 

software engineering, such as data abstraction, modularity, 

and error handling



Pseudocode

� Indentation indicates block structure.

� The looping constructs while, for, and repeat and 

� The conditional constructs if, then, and else

� There is a symbol that indicates a comment.

� An assignment of the form i← e assigns variables i
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� An assignment of the form i← e assigns variables i

the value of expression e

� A multiple assignment of the form i← j ← e assigns 

to both variables i and j the value of expression e

� Array elements are accessed by specifying the array 

name followed by the index in square brackets



An Example: Insertion Sort

� Example: sorting problem

– Input: A sequence of n numbers ‹a1, a2, . . . , an›.

– Output: A permutation (reordering) ‹a΄1, a ΄2, . . . , a΄n› of 

the input sequence such that a΄1≤ a΄2 ≤ . . . ≤ a΄n›

� Insertion sort algorithm

– Insertion sort is an efficient algorithm for sorting a small 
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– Insertion sort is an efficient algorithm for sorting a small 

number of elements.

– The numbers that we wish to sort are also known as the 

keys.

– Insertion sort works the way many people sort a hand of 

playing cards.



An Example: Insertion Sort

� Sorting a hand of cards using insertion sort
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An Example: Insertion Sort

� Input: an array A[1 . . n] containing a sequence of 

length n that is to be sorted.
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An Example: Insertion Sort

� The operation of INSERTION-SORT on the array A = 

‹5, 2, 4, 6, 1, 3›.
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An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1
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j = j - 1

}

A[j+1] = key

}

}



An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]
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key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}
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InsertionSort(A, n) {

for i = 2 to n {

key = A[i]
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i = 2 j = 1 key = 10

A[j] = 30 A[j+1] = 10
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j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}
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InsertionSort(A, n) {

for i = 2 to n {

key = A[i]
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Analyzing algorithms

� Analyzing an algorithm

– Analyzing an algorithm has come to mean predicting the 

resources that the algorithm requires. 

– Main resources are computational time and memory

– Most often it is computational time that we want to 

measure.
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measure.

– By analyzing several candidate algorithms for a problem, a 

most efficient one can be easily identified. 



Analyzing algorithms

� The time taken by the INSERTION-SORT procedure 

depends on 

– The size of the input: sorting a thousand numbers takes 

longer than sorting three numbers. 

– How the numbers nearly sorted they already are.

� The time taken by an algorithm grows with the size of 

Complexity of Algorithms

� The time taken by an algorithm grows with the size of 

the input

� It is traditional to describe the running time of a 

program as a function of the size of its input. 



Analyzing algorithms

� Input size

– For many problems, the most natural measure is the number 

of items in the input—for example, the array size n for 

sorting.

– Sometimes, it is more appropriate to describe the size of the 

input with two numbers rather than one. 
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input with two numbers rather than one. 

� For instance, if the input to an algorithm is a graph, the input size 

can be described by the numbers of vertices and edges in the graph. 



Analyzing algorithms

� Running time

– The running time of an algorithm on a particular input is 

the number of primitive operations or “steps” executed.

– It is machine-independent.
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Analyzing Insertion Sort

� We start by presenting the time cost of each statement 

and the number of times each statement is executed.

Complexity of Algorithms



Analyzing Insertion Sort

� Where,

– ci : the time cost of ith the statement

– j = 2, 3, . . . , n, where n = length[A]

– tj : the number of times the while loop test in line 5 is 

executed for that value of j.

– T (n) : the running time of algorithm

Complexity of Algorithms

– T (n) : the running time of algorithm

� Even for inputs of a given size, an algorithm’s running time 

may depend on which input of that size is given.



Analyzing Insertion Sort

� Best case

– The best case occurs if the array is already sorted, 

– tj = 1 for j = 2, 3, . . . , n, inner loop body never executed

– The best-case running time is:

Complexity of Algorithms

– T(n) can be expressed as an + b for constants a and b that 

depend on the statement costs ci

– It is thus a linear function of n.



Analyzing Insertion Sort

� Worst case

– tj = j for j = 2, 3, . . . , n, inner loop body executed for all 

previous elements 

Complexity of Algorithms

– T(n) can be expressed as an2 + bn + c for constants a, b, and 

c that again depend on the statement costs ci ; 

– It is thus a quadratic function of n.



Analyzing algorithms

� In analyzing algorithm, we usually concentrate on 

finding only the worst-case running time, that is the 

longest running time for any input of size n.

� The reasons for using worst-case running time:

– The worst-case running time of an algorithm is an upper 

bound on the running time for any input. Knowing it gives 
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bound on the running time for any input. Knowing it gives 

us a guarantee that the algorithm will never take any longer.

– For some algorithms, the worst case occurs frequently.



Order of Growth
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Order of Growth

� Asymptotic performance

– How does algorithm behave as the problem size gets very 

large?

� Running time

� Memory/storage requirements

� Order of growth / rate of growth

Complexity of Algorithms

� Order of growth / rate of growth

– is the interesting measure



O-Notation

� O-notation provides an asymptotic upper bound.

� When we use O-notation to bound the worst-case 

running time of an algorithm, we have a bound on the 

running time of the algorithm on every input.

� Definition of Big-O Notation

Complexity of Algorithms

– O(g(n)) = { f (n) : there exist positive constants c and n0

such that 0 ≤ f(n) ≤ c ⋅ g(n) for all n ≥ n0 }

� We write f (n) = O(g(n)) to indicate that a function f(n) 

is a member of the set O(g(n)).



O-Notation

� The worst-case running time of INSERTION-SORT is 

an2 + bn + c for constants a, b, and c that again depend 

on the statement costs ci

� For simplicity we ignore constant factors because they 

are less significant than the rate of growth in 

determining computational efficiency for large inputs
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determining computational efficiency for large inputs

� Therefore we consider only n2 as rate of growth or 

order of growth

� Thus, we say Insertion-Sort’s (worst-case) running 

time is O(n2)

– Properly we should say run time is in O(n2)



O-Notation

� The value of f (n) always lies on or below cg(n).
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Ω-Notation

� Ω-notation provides an asymptotic lower bound.

� Definition of Big-Ω Notation

– Ω(g(n)) = { f (n) : there exist positive constants c and n0

such that 0 ≤ c ⋅ g(n) ≤ f(n) for all n ≥ n0 }
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Θ-Notation

� Definition of Big-Θ Notation

– Θ(g(n)) = { f (n) : there exist positive constants c and n0

such that 0 ≤ c1 ⋅ g(n) ≤ f(n) ≤ c2 ⋅ g(n) for all n ≥ n0 }

� function f (n) belongs to the set (g(n)) if there exist 

positive constants c1 and c2 such that it can be 

“sandwiched” between c ⋅ g(n) and c ⋅ g(n), for 
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“sandwiched” between c1 ⋅ g(n) and c2 ⋅ g(n), for 

sufficiently large n.

� Because (g(n)) is a set, we could write f(n) ∈ (g(n)) to 

indicate that f(n) is a member of (g(n)). 

� Instead, we will usually write f(n) = (g(n)) to express 

the same notion.



Θ-Notation
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Complexity of Algorithms

� Polynomial-time algorithm

– An algorithm is a polynomial-time algorithm if its 

complexity is O(g(n)), where g(n) is a polynomial function 

of n.

� A polynomial function of degree k can be defined as 

follows:
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follows:

� where ak > 0 and aj ≥ 0, ∀1 ≤ j ≤ k − 1. 

� The corresponding algorithm has a polynomial 

complexity of O(nk).



Complexity of Algorithms

� Exponential-time algorithm

– An algorithm is an exponential-time algorithm if its 

complexity is O(cn), where c is a real constant strictly 

superior to 1.
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Complexity of Algorithms

� Search time of an algorithm as a function of the 

problem size using different complexities

Complexity of Algorithms
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