
In the name of GodIn the name of God

Part 2. Complexity Theory

2.2. Complexity of Problems

Complexity of Problems

2.2. Complexity of Problems

Spring 2010
Instructor: Dr. Masoud Yaghini

Easy vs. Difficult Problems

� Tractable or Easy Problems

– The problems that are solvable by polynomial-time

algorithms are tractable, or easy

� Intractable or Difficult Problems

– The problems that require super-polynomial time are

intractable, or hard.

Complexity of Problems

intractable, or hard.

Decision & Optimization Problems

� Decision Problems

– Given an input and a question regarding a problem,

determine if the answer is yes or no

� Example: Prime number decision problem.

– Is a given number Q a prime number?

Complexity of Problems

– It will return yes if the number Q is a prime one, otherwise

the no answer is returned.

Decision & Optimization Problems

� Optimization Problems

– Find a solution with the “best” value

� Example: Traveling Salesman Problem.

– “find the optimal Hamiltonian tour that optimizes the total

distance,”

Complexity of Problems

Decision & Optimization Problems

� An optimization problem can always be reduced to a

decision problem.

� Example: Optimization versus decision problem.

– The TSP can reduced to a decision problem: “given an

integer D, is there a Hamiltonian tour with a distance less

than or equal to D?”

Complexity of Problems

than or equal to D?”

Class P Problems

� Class P Problems

– The family of problems where a known deterministic

polynomial-time algorithm exists to solve the problem.

– They can be solved in time O(nk) for some constant k,

where n is the size of the input to the problem.

Complexity of Problems

Class P Problems

� Some problems of class P

– shortest path problems

– maximum flow network

– minimum spanning tree

– maximum bipartite matching

– linear programming continuous

Complexity of Problems

– linear programming continuous

Nondeterministic Polynomial Algorithms

� Nondeterministic algorithm = two stage procedure:

� 1) Nondeterministic (“guessing”) stage:

– generate randomly an arbitrary string that can be thought of

as a candidate solution (“certificate”)

� 2) Deterministic (“verification”) stage:

Complexity of Problems

– take the certificate and the instance to the problem and

returns YES if the certificate represents a solution

� NP algorithms (Nondeterministic polynomial)

– verification stage is polynomial

Nondeterministic Polynomial Algorithms

� Example: Nondeterministic algorithm for the 0–1

knapsack problem.

– The 0–1 knapsack decision problem:

� Given a set of N objects.

� Each object O has a specified weight and a specified value.

� Given a capacity, which is the maximum total weight of the

Complexity of Problems

� Given a capacity, which is the maximum total weight of the

knapsack, and a quota, which is the minimum total value that one

wants to get.

� The 0–1 knapsack decision problem consists in finding a subset of

the objects whose total weight is at most equal to the capacity and

whose total value is at least equal to the specified quota.

Nondeterministic Polynomial Algorithms

� Nondeterministic algorithm for the knapsack problem

Complexity of Problems

Class NP Problems

� Class NP Problems

– NP problems stands for Nondeterministic Polynomial-

time Problems

– The set of all decision problems that can be solved by a

nondeterministic algorithm.

� i.e., verifiable in polynomial time

Complexity of Problems

� i.e., verifiable in polynomial time

– If we were somehow given a solution, then we could verify

that the solution is correct in time polynomial in the size of

the input to the problem.

– Common error: NP does not mean “non-polynomial”

Example: Hamiltonian Cycle

� Given: a directed graph G = (V, E), determine a

simple cycle that contains each vertex in V

– Each vertex can only be visited once

� Certificate:

– Sequence: 〈v , v , v , …, v 〉

Complexity of Problems

– Sequence: 〈v1, v2, v3, …, v|V|〉
hamiltonian

not

hamiltonian

Is P = NP?

� Any problem in P is also in NP:

P ⊆ NP

� The big (and open question) is whether NP ⊆ P or

P = NP

P

NP

Complexity of Problems

– i.e., if it is always easy to check a solution, should it also be

easy to find a solution?

– Obviously, for each problem in P we have a

nondeterministic algorithm solving it.

� Most computer scientists believe that this is false but

we do not have a proof …

Class NP-Complete Problems

� Class NP-Complete Problems

– NP-Complete problems stands for Nondeterministic

Polynomial-time Complete Problems

– The NP-complete problems are the hardest problems in NP

– The problems that no one can solve them in a polynomial-

time

Complexity of Problems

time

– If a polynomial deterministic algorithm exists to solve an

NP-complete problem, then all problems of class NP may

be solved in polynomial time.

Reductions

� A problem A can be reduced to another problem B if

any instance of A can be rephrased to an instance of B,

the solution to which provides a solution to the

instance of A

– This rephrasing is called a transformation

Intuitively: If A reduces in polynomial time to B, A

Complexity of Problems

� Intuitively: If A reduces in polynomial time to B, A

is “no harder to solve” than B

� Example: lcm(m, n) = m * n / gcd(m, n),

lcm(m,n) (as A) problem is reduced to gcd(m, n) (as

B) problem

Reductions

� Reduction is a way of saying that one problem is

“easier” than another.

� We say that problem A is easier than problem B,

(i.e., we write “A ≤p B”)

Complexity of Problems

� Idea: transform the inputs of A to inputs of B

ffff Problem B
αααα ββββ

yes

no

yes

no

Problem A

Polynomial Reductions

� Given two problems A, B, we say that A is

polynomially reducible to B (A ≤p B) if:

1. There exists a function f that converts the input of A to

inputs of B in polynomial time

2. A(i) = YES ⇔ B(f(i)) = YES

Complexity of Problems

NP-Completeness (formally)

� A problem B is NP-complete if:

(1) B ∈ NP

(2) A ≤p B for all A ∈ NP

� If B satisfies only property (2) we say that B is NP-hard

P

NP

NP-complete

Complexity of Problems

� If B satisfies only property (2) we say that B is NP-hard

� No polynomial time algorithm has been discovered for an NP-

Complete problem

� No one has ever proven that no polynomial time algorithm can

exist for any NP-Complete problem

Implications of Reduction

- If A ≤ B and B ∈ P, then A ∈ P

ffff Problem B
αααα ββββ

yes

no

yes

no

Problem A

Complexity of Problems

- If A ≤p B and B ∈ P, then A ∈ P

- if A ≤p B and A ∉ P, then B ∉ P

Proving Polynomial Time

1. Use a polynomial time reduction algorithm to

Polynomial time algorithm to decide A

ffff Polynomial time

algorithm to decide B

αααα ββββ
yes

no

yes

no

Complexity of Problems

1. Use a polynomial time reduction algorithm to

transform A into B

2. Run a known polynomial time algorithm for B

3. Use the answer for B as the answer for A

Proving NP-Completeness

Theorem: If A is NP-Complete and A ≤p B

⇒ B is NP-Hard

In addition, if B ∈ NP

⇒ B is NP-Complete

Complexity of Problems

⇒ B is NP-Complete

Revisit “Is P = NP?”

P

NP

NP-complete

Complexity of Problems 22

Theorem: If any NP-Complete problem can be solved in

polynomial time ⇒ then P = NP.

Relation among P, NP, NPC

� P ⊆ NP (Sure)

� NPC ⊆ NP (sure)

� P = NP (or P ⊂ NP, or P ≠ NP) ???

� NPC = NP (or NPC ⊂ NP, or NPC ≠ NP) ???

Complexity of Problems

P & NP-Complete Problems

� Shortest simple path

– Given a graph G = (V, E) find a shortest path from a

source to all other vertices

– Polynomial solution: O(VE)

Complexity of Problems

– Polynomial solution: O(VE)

� Longest simple path

– Given a graph G = (V, E) find a longest path from a source

to all other vertices

– NP-complete

P & NP-Complete Problems

� Euler tour

– G = (V, E) a connected, directed graph find a cycle that

traverses each edge of G exactly once (may visit a vertex

multiple times)

– Polynomial solution O(E)

Complexity of Problems

– Polynomial solution O(E)

� Hamiltonian cycle

– G = (V, E) a connected, directed graph find a cycle that

visits each vertex of G exactly once

– NP-complete

NP-Hard Problems

� NP-Hard problems

– NP-hard stands for Nondeterministic Polynomial-time

Hard

– Most of the real-world optimization problems are NP-hard

for which provably efficient algorithms do not exist.

– They require exponential time to be solved in optimality.

Complexity of Problems

– They require exponential time to be solved in optimality.

– Metaheuristics constitute an important alternative to solve

this class of problems.

– NP-hard problems may be of any type: decision problems,

search problems, or optimization problems.

NP-Hard Problems

� NP-hard problems do not necessarily belong to NP.

� An NP-hard problem that is in NP is said to be NP-complete.

Complexity of Problems

NP-Hard Problems

� Some examples

Matrix permanent
Halting problem

Hamilton cycle
Steiner tree
Graph 3-coloring
Satisfiability

Complexity of Problems

…Satisfiability
Maximum clique
…

Factoring
Graph isomorphism
Minimum circuit size
…

Graph connectivity
Primality testing
Matrix determinant
Linear programming
…

Some NP-hard problems

� Sequencing and scheduling problems

– such as flow-shop scheduling, job-shop scheduling, or open-shop

scheduling.

� Assignment and location problems

– such as quadratic assignment problem (QAP), generalized assignment

problem (GAP), location facility, and the p-median problem.

Grouping problems

Complexity of Problems

� Grouping problems

– such as data clustering, graph partitioning, and graph coloring.

� Routing and covering problems

– such as vehicle routing problems (VRP), set covering problem (SCP),

Steiner tree problem, and covering tour problem (CTP).

� Knapsack and packing/cutting problems, and so on.

NP-hard Problems

� Integer programming models belong in general to the

NP-hard class.

� Unlike LP models, IP problems are difficult to solve

because the feasible region is not a convex set.

Complexity of Problems

Complexity of Problems

� To become a good algorithm designer, you must

understand the basics of the theory of NP-

completeness.

� If you can establish a problem as NP-hard, you

provide good evidence for its intractability.

As an engineer, you would then do better spending

Complexity of Problems

� As an engineer, you would then do better spending

your time developing an approximation algorithm,

rather than searching for a fast algorithm that solves

the problem exactly.

� Thus, it is important to become familiar with this

remarkable class of problems.

NP-naming convention

� NP-complete - means problems that are 'complete' in

NP, i.e. the most difficult to solve in NP

� NP-hard - stands for 'at least' as hard as NP (but not

necessarily in NP);

� NP-easy - stands for 'at most' as hard as NP (but not

necessarily in NP);

Complexity of Problems

necessarily in NP);

� NP-equivalent - means equally difficult as NP, (but

not necessarily in NP);

References

Complexity of Problems

References

� Thomas H. Cormen et al., Introduction to

Algorithms, Second Edition, The MIT Press, 2001.

(Chapter 34)

� El-Ghazali Talbi, Metaheuristics : From Design to

Implementation, John Wiley & Sons, 2009.

(Chapter 1)

Complexity of Problems

(Chapter 1)

The End

Complexity of Problems

