In the name of God

Part 2. Complexity Theory

2.2. Complexity of Problems

Spring 2010
Instructor: Dr. Masoud Yaghini

Easy vs. Difficult Problems

- Tractable or Easy Problems
- The problems that are solvable by polynomial-time algorithms are tractable, or easy
- Intractable or Difficult Problems
- The problems that require super-polynomial time are intractable, or hard.

Decision \& Optimization Problems

- Decision Problems
- Given an input and a question regarding a problem, determine if the answer is yes or no
- Example: Prime number decision problem.
- Is a given number Q a prime number?
- It will return yes if the number Q is a prime one, otherwise the no answer is returned.

Decision \& Optimization Problems

- Optimization Problems
- Find a solution with the "best" value
- Example: Traveling Salesman Problem.
- "find the optimal Hamiltonian tour that optimizes the total distance,"

Decision \& Optimization Problems

- An optimization problem can always be reduced to a decision problem.
- Example: Optimization versus decision problem.
- The TSP can reduced to a decision problem: "given an integer D, is there a Hamiltonian tour with a distance less than or equal to D ?"

Class P Problems

- Class P Problems
- The family of problems where a known deterministic polynomial-time algorithm exists to solve the problem.
- They can be solved in time $O\left(n^{k}\right)$ for some constant k, where n is the size of the input to the problem.

Class P Problems

- Some problems of class P
- shortest path problems
- maximum flow network
- minimum spanning tree
- maximum bipartite matching
- linear programming continuous

Nondeterministic Polynomial Algorithms

- Nondeterministic algorithm = two stage procedure:
- 1) Nondeterministic ("guessing") stage:
- generate randomly an arbitrary string that can be thought of as a candidate solution ("certificate")
- 2) Deterministic ("verification") stage:
- take the certificate and the instance to the problem and returns YES if the certificate represents a solution
- NP algorithms (Nondeterministic polynomial)
- verification stage is polynomial

Nondeterministic Polynomial Algorithms

- Example: Nondeterministic algorithm for the 0-1 knapsack problem.
- The 0-1 knapsack decision problem:
- Given a set of N objects.
- Each object O has a specified weight and a specified value.
- Given a capacity, which is the maximum total weight of the knapsack, and a quota, which is the minimum total value that one wants to get.
- The 0-1 knapsack decision problem consists in finding a subset of the objects whose total weight is at most equal to the capacity and whose total value is at least equal to the specified quota.

Nondeterministic Polynomial Algorithms

- Nondeterministic algorithm for the knapsack problem

Input OS : set of objects ; QUOTA : number ; CAPACITY : number. Output S : set of objects ; FOUND : boolean.
$S=$ empty ; total_value $=0 ;$ total_weight $=0 ; F O U N D=$ false ;
Pick an order L over the objects ;
Loop
Choose an object O in L; Add O to S ;
total_value $=$ total_value + O.value ;
total_weight $=$ total_weight + O.weight ;
If total_weight $>$ CAPACITY Then fail
Else If total_value \geq QUOTA
FOUND = true ;
succeed;
Endif Endif
Delete all objects up to O from L;
Endloop

Class NP Problems

- Class NP Problems
- NP problems stands for Nondeterministic Polynomialtime Problems
- The set of all decision problems that can be solved by a nondeterministic algorithm.
- i.e., verifiable in polynomial time
- If we were somehow given a solution, then we could verify that the solution is correct in time polynomial in the size of the input to the problem.
- Common error: NP does not mean "non-polynomial"

Example: Hamiltonian Cycle

- Given: a directed graph $G=(V, E)$, determine a simple cycle that contains each vertex in V
- Each vertex can only be visited once
- Certificate:
- Sequence: $\left\langle v_{1}, v_{2}, v_{3}, \ldots, v_{\mid V I}\right\rangle$

Is $\mathbf{P}=\mathbf{N P}$?

- Any problem in P is also in NP:

$$
\mathrm{P} \subseteq \mathrm{NP}
$$

- The big (and open question) is whether $\mathrm{NP} \subseteq \mathrm{P}$ or $\mathrm{P}=\mathrm{NP}$
- i.e., if it is always easy to check a solution, should it also be easy to find a solution?
- Obviously, for each problem in P we have a nondeterministic algorithm solving it.
- Most computer scientists believe that this is false but we do not have a proof ...

Class NP-Complete Problems

- Class NP-Complete Problems
- NP-Complete problems stands for Nondeterministic Polynomial-time Complete Problems
- The NP-complete problems are the hardest problems in NP
- The problems that no one can solve them in a polynomialtime
- If a polynomial deterministic algorithm exists to solve an NP-complete problem, then all problems of class NP may be solved in polynomial time.

Reductions

- A problem A can be reduced to another problem B if any instance of A can be rephrased to an instance of B, the solution to which provides a solution to the instance of A
- This rephrasing is called a transformation
- Intuitively: If A reduces in polynomial time to B, A is "no harder to solve" than B
- Example: $\operatorname{lcm}(\mathrm{m}, \mathrm{n})=\mathrm{m} * \mathrm{n} / \operatorname{gcd}(\mathrm{m}, \mathrm{n})$,
$\operatorname{lcm}(\mathrm{m}, \mathrm{n})($ as A) problem is reduced to $\operatorname{gcd}(\mathrm{m}, \mathrm{n})$ (as B) problem

Reductions

- Reduction is a way of saying that one problem is "easier" than another.
- We say that problem A is easier than problem B, (i.e., we write "A $\leq_{p} B$ ")
- Idea: transform the inputs of A to inputs of B

Complexity of Problems

Polynomial Reductions

- Given two problems A, B, we say that A is polynomially reducible to $\mathrm{B}\left(\mathrm{A} \leq_{\mathrm{p}} \mathrm{B}\right)$ if:

1. There exists a function f that converts the input of A to inputs of B in polynomial time
2. $\mathrm{A}(\mathrm{i})=\mathrm{YES} \Leftrightarrow \mathrm{B}(\mathrm{f}(\mathrm{i}))=\mathrm{YES}$

NP-Completeness (formally)

- A problem B is NP-complete if:
(1) $B \in \mathbf{N P}$
(2) $\mathrm{A} \leq_{p} \mathrm{~B}$ for all $\mathrm{A} \in \mathbf{N P}$

- If B satisfies only property (2) we say that B is NP-hard
- No polynomial time algorithm has been discovered for an NPComplete problem
- No one has ever proven that no polynomial time algorithm can exist for any NP-Complete problem

Implications of Reduction

- If $\mathrm{A} \leq_{\mathrm{p}} \mathrm{B}$ and $\mathrm{B} \in \mathrm{P}$, then $\mathrm{A} \in \mathrm{P}$
- if $\mathrm{A} \leq_{\mathrm{p}} \mathrm{B}$ and $\mathrm{A} \notin \mathrm{P}$, then $\mathrm{B} \notin \mathrm{P}$

Proving Polynomial Time

1. Use a polynomial time reduction algorithm to transform A into B
2. Run a known polynomial time algorithm for B
3. Use the answer for B as the answer for A

Proving NP-Completeness

Theorem: If A is NP-Complete and $\mathrm{A} \leq_{\mathrm{p}} \mathrm{B}$
$\Rightarrow B$ is NP-Hard
In addition, if $\mathrm{B} \in \mathrm{NP}$
$\Rightarrow B$ is NP-Complete

Complexity of Problems

Revisit "Is P = NP?"

Theorem: If any NP-Complete problem can be solved in polynomial time \Rightarrow then $\mathrm{P}=\mathrm{NP}$.

Relation among P, NP, NPC

- $\mathrm{P} \subseteq \mathrm{NP}$ (Sure)
- $\mathrm{NPC} \subseteq \mathrm{NP}$ (sure)
- $\mathrm{P}=\mathrm{NP}$ (or $\mathrm{P} \subset \mathrm{NP}$, or $\mathrm{P} \neq \mathrm{NP}$) ???
$-\mathrm{NPC}=\mathrm{NP}($ or $\mathrm{NPC} \subset \mathrm{NP}$, or $\mathrm{NPC} \neq \mathrm{NP}) ? ?$?

P \& NP-Complete Problems

- Shortest simple path
- Given a graph $G=(V, E)$ find a shortest path from a source to all other vertices
- Polynomial solution: $\mathrm{O}(\mathrm{VE})$
- Longest simple path
- Given a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ find a longest path from a source to all other vertices
- NP-complete

P \& NP-Complete Problems

- Euler tour
$-\mathrm{G}=(\mathrm{V}, \mathrm{E})$ a connected, directed graph find a cycle that traverses each edge of G exactly once (may visit a vertex multiple times)
- Polynomial solution O(E)
- Hamiltonian cycle
$-\mathrm{G}=(\mathrm{V}, \mathrm{E})$ a connected, directed graph find a cycle that visits each vertex of G exactly once
- NP-complete

NP-Hard Problems

- NP-Hard problems
- NP-hard stands for Nondeterministic Polynomial-time Hard
- Most of the real-world optimization problems are NP-hard for which provably efficient algorithms do not exist.
- They require exponential time to be solved in optimality.
- Metaheuristics constitute an important alternative to solve this class of problems.
- NP-hard problems may be of any type: decision problems, search problems, or optimization problems.

NP-Hard Problems

- NP-hard problems do not necessarily belong to NP.
- An NP-hard problem that is in NP is said to be NP-complete.

NP-Hard Problems

- Some examples

Complexity of Problems

Some NP-hard problems

- Sequencing and scheduling problems
- such as flow-shop scheduling, job-shop scheduling, or open-shop scheduling.
- Assignment and location problems
- such as quadratic assignment problem (QAP), generalized assignment problem (GAP), location facility, and the p-median problem.
- Grouping problems
- such as data clustering, graph partitioning, and graph coloring.
- Routing and covering problems
- such as vehicle routing problems (VRP), set covering problem (SCP), Steiner tree problem, and covering tour problem (CTP).
- Knapsack and packing/cutting problems, and so on.

NP-hard Problems

- Integer programming models belong in general to the NP-hard class.
- Unlike LP models, IP problems are difficult to solve because the feasible region is not a convex set.

Complexity of Problems

- To become a good algorithm designer, you must understand the basics of the theory of NPcompleteness.
- If you can establish a problem as NP-hard, you provide good evidence for its intractability.
- As an engineer, you would then do better spending your time developing an approximation algorithm, rather than searching for a fast algorithm that solves the problem exactly.
- Thus, it is important to become familiar with this remarkable class of problems.

NP-naming convention

- NP-complete - means problems that are 'complete' in NP , i.e. the most difficult to solve in NP
- NP-hard - stands for 'at least' as hard as NP (but not necessarily in NP);
- NP-easy - stands for 'at most' as hard as NP (but not necessarily in NP);
- NP-equivalent - means equally difficult as NP, (but not necessarily in NP);

References

Complexity of Problems

References

- Thomas H. Cormen et al., Introduction to Algorithms, Second Edition, The MIT Press, 2001. (Chapter 34)
- El-Ghazali Talbi, Metaheuristics : From Design to Implementation, John Wiley \& Sons, 2009. (Chapter 1)

The End

