In the name of God

Part 2. Complexity Theory

2.2. Complexity of Problems

Spring 2010

Instructor: Dr. Masoud Yaghini

Complexity of Problems

Easy vs. Difficult Problems

e Tractable or Easy Problems

— The problems that are solvable by polynomial-time
algorithms are tractable, or easy

e Intractable or Difficult Problems

— The problems that require super-polynomial time are
intractable, or hard.

Complexity of Problems

Decision & Optimization Problems

e Decision Problems
— Given an input and a question regarding a problem,
determine if the answer is yes or no
e Example: Prime number decision problem.
— Is a given number Q a prime number?

— It will return yes 1f the number Q 1s a prime one, otherwise
the no answer 1s returned.

Complexity of Problems

Decision & Optimization Problems

e Optimization Problems

— Find a solution with the “best’” value

e Example: Traveling Salesman Problem.

— “find the optimal Hamiltonian tour that optimizes the total
distance,”

Complexity of Problems

Decision & Optimization Problems

e An optimization problem can always be reduced to a
decision problem.

e Example: Optimization versus decision problem.

— The TSP can reduced to a decision problem: *“given an
integer D, 1s there a Hamiltonian tour with a distance less
than or equal to D?”

Complexity of Problems

Class P Problems

e (Class P Problems

— The family of problems where a known deterministic
polynomial-time algorithm exists to solve the problem.

— They can be solved in time O(n*) for some constant k,
where n 1s the size of the input to the problem.

Complexity of Problems

Class P Problems

e Some problems of class P
— shortest path problems
— maximum flow network
— minimum spanning tree
— maximum bipartite matching

— linear programming continuous

Complexity of Problems

Nondeterministic Polynomial Algorithms

e Nondeterministic algorithm = two stage procedure:

e 1) Nondeterministic (“guessing’) stage:

— generate randomly an arbitrary string that can be thought of
as a candidate solution (“certificate™)

e 2) Deterministic (“verification”) stage:

— take the certificate and the instance to the problem and
returns YES if the certificate represents a solution

e NP algorithms (Nondeterministic polynomial)

— verification stage 1s polynomial

Complexity of Problems

Nondeterministic Polynomial Algorithms

e Example: Nondeterministic algorithm for the 0-1
knapsack problem.

— The 0-1 knapsack decision problem:

¢ Given a set of N objects.
¢ Each object O has a specified weight and a specified value.

¢ Given a capacity, which is the maximum total weight of the
knapsack, and a quota, which 1s the minimum total value that one
wants to get.

¢ The 0-1 knapsack decision problem consists in finding a subset of

the objects whose total weight is at most equal to the capacity and
whose total value is at least equal to the specified quota.

Complexity of Problems

Nondeterministic Polynomial Algorithms

e Nondeterministic algorithm for the knapsack problem

Input OS : set of objects ; QUOTA : number ; CAPACITY : number.
Output S : set of objects ; FOUND : boolean.
S = empty : total_value = 0 ; total_weight = 0 ; FOUND = false :
Pick an order L over the objects ;
Loop
Choose an object OinL ; AddOto S :
total_value = total_value + O.value :
total_weight = total_weight + O.weight :
If total_weight > CAPACITY Then fail
Else If total_value > QUOTA
FOUND = true :
succeed :
Endif Endif
Delete all objects up to O from L ;
Endloop -

Complexit:

Class NP Problems

e Class NP Problems

— NP problems stands for Nondeterministic Polynomial-
time Problems

— The set of all decision problems that can be solved by a
nondeterministic algorithm.
¢ i.e., verifiable in polynomial time
— If we were somehow given a solution, then we could verify

that the solution 1s correct in time polynomial in the size of
the input to the problem.

— Common error: NP does not mean “non-polynomial”

Complexity of Problems

Example: Hamiltonian Cycle

e Given: a directed graph G = (V, E), determine a
simple cycle that contains each vertex in V

— Each vertex can only be visited once

e Certificate: /\

— Sequence: <V], VZ’ V3, EY) V|V|> Z SS
hamiltonian
not
hamiltonian

Complexity of Problems

Is P=NP?

e Any problem 1n P 1s also in NP:

P c NP :

e The big (and open question) 1s whether NP P or
P=NP

— 1.e., 1f 1t 1s always easy to check a solution, should it also be
easy to find a solution?

NP

— Obviously, for each problem in P we have a
nondeterministic algorithm solving it.

e Most computer scientists believe that this 1s false but
we do not have a proof ...

Complexity of Problems

Class NP-Complete Problems

e Class NP-Complete Problems

— NP-Complete problems stands for Nondeterministic
Polynomial-time Complete Problems

— The NP-complete problems are the hardest problems in NP

— The problems that no one can solve them in a polynomial-
time

— If a polynomial deterministic algorithm exists to solve an

NP-complete problem, then all problems of class NP may
be solved 1n polynomial time.

Complexity of Problems

Reductions

e A problem A can be reduced to another problem B if
any 1nstance of A can be rephrased to an instance of B,
the solution to which provides a solution to the
instance of A

— This rephrasing is called a transformation

e Intuitively: If A reduces in polynomial time to B, A
1s “no harder to solve” than B

e Example: lcm(m, n) =m * n/ gcd(m, n),

lcm(m,n) (as A) problem is reduced to gcd(m, n) (as
B) problem

Complexity of Problems

Reductions

e Reduction 1s a way of saying that one problem 1is

“easier’ than another.

e We say that problem A 1s easier than problem B,

(i.e., we write “A <p B”)

e Idea: transtorm the inputs of A to inputs of B

— f P Problem B

yes

/\

no

Problem A

Complexity of Problems

Polynomial Reductions

e Given two problems A, B, we say that A 1s
polynomially reducible to B (A <p B) 1f:
1. There exists a function f that converts the input of A to
inputs of B in polynomial time
2. A1) =YES < B(f(1)) = YES

Complexity of Problems

NP-Completeness (formally)

e A problem B 1s NP-complete if:

(1) B e NP @ NP-complete

NP

(2) A<pBforall Ae NP
e If B satisfies only property (2) we say that B 1s NP-hard

e No polynomial time algorithm has been discovered for an NP-

Complete problem

e No one has ever proven that no polynomial time algorithm can

exist for any NP-Complete problem

Complexity of Problems

Implications of Reduction

f

.

Problem A

Problem B

yes

yes

/\

no

no

-IfASpBandBe P,then Ae P

-ifASpBandAeé P,thenB ¢ P

Complexity of Problems

Proving Polynomial Time

X f

B,

Polynomial time
algorithm to decide B

yes

yes

/'
e

no

Polynomial time algorithm to decide A

1. Use a polynomial time reduction algorithm to

transform A into B

2. Run a known polynomial time algorithm for B

3. Use the answer for B as the answer for A

Complexity of Problems

Proving NP-Completeness

Theorem: If A 1s NP-Complete and A <, B
— B 1s NP-Hard
In addition, if B € NP

= B is NP-Complete

Complexity of Problems

Revisit ¢‘Is P = NP?”

@ NP-complete

NP

Theorem: If any NP-Complete problem can be solved in

polynomial time = then P = NP.

Complexity of Problems 22

Relation among P, NP, NPC

e P NP (Sure)

e NPC < NP (sure)

e P=NP (or P NP, or P #NP) 77?7

e NPC = NP (or NPC c NP, or NPC # NP) ?7?

Complexity of Problems

P & NP-Complete Problems

e Shortest simple path

— Given a graph G = (V, E) find a shortest path from a

source to all other vertices

— Polynomial solution: O(VE)

e Longest simple path

— Given a graph G = (V, E) find a longest path from a source

to all other vertices

— NP-complete

Complexity of Problems

P & NP-Complete Problems

e Euler tour

— G =(V, E) a connected, directed graph find a cycle that

traverses each edge of G exactly once (may visit a vertex

multiple times)

— Polynomial solution O(E)

e Hamiltonian cycle

— G =(V, E) a connected, directed graph find a cycle that

visits each vertex of G exactly once

— NP-complete

Complexity of Problems

NP-Hard Problems

e NP-Hard problems

NP-hard stands for Nondeterministic Polynomial-time
Hard

Most of the real-world optimization problems are NP-hard
for which provably efficient algorithms do not exist.

They require exponential time to be solved in optimality.

Metaheuristics constitute an important alternative to solve
this class of problems.

NP-hard problems may be of any type: decision problems,
search problems, or optimization problems.

Complexity of Problems

NP-Hard Problems

e NP-hard problems do not necessarily belong to NP.
e An NP-hard problem that 1s in NP 1s said to be NP-complete.

‘a, NP-Hard

"NP-Complete X

Complexity of Problems

NP-Hard Problems

e Some examples

Hamilton cycle =. NP-Hard
Steiner tree -har \Matrix permanent
Graph 3-coloring \ ' Halting problem

Satisfiability
Maximum clique

Factoring
Graph isomorphism
Minimum circuit size

Graph connectivity
Primality testing
Matrix determinant
Linear programming

Complexity of Problems

Some NP-hard problems

e Sequencing and scheduling problems

— such as flow-shop scheduling, job-shop scheduling, or open-shop
scheduling.

e Assignment and location problems

— such as quadratic assignment problem (QAP), generalized assignment
problem (GAP), location facility, and the p-median problem.

e Grouping problems

— such as data clustering, graph partitioning, and graph coloring.

e Routing and covering problems

— such as vehicle routing problems (VRP), set covering problem (SCP),
Steiner tree problem, and covering tour problem (CTP).

e Knapsack and packing/cutting problems, and so on.

Complexity of Problems

NP-hard Problems

e Integer programming models belong in general to the
NP-hard class.

e Unlike LP models, IP problems are difficult to solve
because the feasible region 1s not a convex set.

Complexity of Problems

Complexity of Problems

e To become a good algorithm designer, you must
understand the basics of the theory of NP-
completeness.

e If you can establish a problem as NP-hard, you
provide good evidence for its intractability.

e As an engineer, you would then do better spending
your time developing an approximation algorithm,
rather than searching for a fast algorithm that solves
the problem exactly.

e Thus, 1t 1s important to become familiar with this
remarkable class of problems.

Complexity of Problems

NP-naming convention

e NP-complete - means problems that are 'complete’ in
NP, 1.e. the most difficult to solve in NP

e NP-hard - stands for 'at least' as hard as NP (but not
necessarily in NP);

e NP-easy - stands for 'at most' as hard as NP (but not
necessarily in NP);

e NP-equivalent - means equally difficult as NP, (but
not necessarily in NP);

Complexity of Problems

References

Complexity of Problems

References

e Thomas H. Cormen et al., Introduction to
Algorithms, Second Edition, The MIT Press, 2001.
(Chapter 34)

e El-Ghazali Talbi, Metaheuristics : From Design to
Implementation, John Wiley & Sons, 2009.
(Chapter 1)

Complexity of Problems

The End

Complexity of Problems

