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Easy vs. Difficult Problems

� Tractable or Easy Problems

– The problems that are solvable by polynomial-time 

algorithms are tractable, or easy

� Intractable or Difficult Problems

– The problems that require super-polynomial time are 

intractable, or hard.
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intractable, or hard.



Decision & Optimization Problems

� Decision Problems

– Given an input and a question regarding a problem, 

determine if the answer is yes or no

� Example: Prime number decision problem. 

– Is a given number Q a prime number?
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– It will return yes if the number Q is a prime one, otherwise 

the no answer is returned.



Decision & Optimization Problems

� Optimization Problems

– Find a solution with the “best” value

� Example: Traveling Salesman Problem. 

– “find the optimal Hamiltonian tour that optimizes the total 

distance,” 
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Decision & Optimization Problems

� An optimization problem can always be reduced to a 

decision problem.

� Example: Optimization versus decision problem. 

– The TSP can reduced to a decision problem: “given an 

integer D, is there a Hamiltonian tour with a distance less 

than or equal to D?”
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than or equal to D?”



Class P Problems

� Class P Problems

– The family of problems where a known deterministic 

polynomial-time algorithm exists to solve the problem.

– They can be solved in time O(nk) for some constant k, 

where n is the size of the input to the problem. 
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Class P Problems

� Some problems of class P

– shortest path problems

– maximum flow network

– minimum spanning tree 

– maximum bipartite matching

– linear programming continuous 
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– linear programming continuous 



Nondeterministic Polynomial Algorithms

� Nondeterministic algorithm = two stage procedure:

� 1) Nondeterministic (“guessing”) stage: 

– generate randomly an arbitrary string that can be thought of 

as a candidate solution (“certificate”)

� 2) Deterministic (“verification”) stage:
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– take the certificate and the instance to the problem and 

returns YES if the certificate represents a solution

� NP algorithms (Nondeterministic polynomial)

– verification stage is polynomial



Nondeterministic Polynomial Algorithms

� Example: Nondeterministic algorithm for the 0–1 

knapsack problem. 

– The 0–1 knapsack decision problem:

� Given a set of N objects. 

� Each object O has a specified weight and a specified value. 

� Given a capacity, which is the maximum total weight of the 
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� Given a capacity, which is the maximum total weight of the 

knapsack, and a quota, which is the minimum total value that one 

wants to get. 

� The 0–1 knapsack decision problem consists in finding a subset of 

the objects whose total weight is at most equal to the capacity and 

whose total value is at least equal to the specified quota.



Nondeterministic Polynomial Algorithms

� Nondeterministic algorithm for the knapsack problem
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Class NP Problems

� Class NP Problems

– NP problems stands for Nondeterministic Polynomial-

time Problems

– The set of all decision problems that can be solved by a 

nondeterministic algorithm.

� i.e., verifiable in polynomial time
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� i.e., verifiable in polynomial time

– If we were somehow given a solution, then we could verify 

that the solution is correct in time polynomial in the size of 

the input to the problem. 

– Common error: NP does not mean “non-polynomial”



Example: Hamiltonian Cycle

� Given: a directed graph G = (V, E), determine a 

simple cycle that contains each vertex in V

– Each vertex can only be visited once

� Certificate:

– Sequence: 〈v , v , v , …, v 〉
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– Sequence: 〈v1, v2, v3, …, v|V|〉
hamiltonian

not 

hamiltonian



Is P = NP?

� Any problem in P is also in NP: 

P ⊆ NP

� The big (and open question) is whether NP ⊆ P or      

P = NP

P

NP
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– i.e., if it is always easy to check a solution, should it also be 

easy to find a solution?

– Obviously, for each problem in P we have a 

nondeterministic algorithm solving it.

� Most computer scientists believe that this is false but 

we do not have a proof …



Class NP-Complete Problems

� Class NP-Complete Problems

– NP-Complete problems stands for Nondeterministic 

Polynomial-time Complete Problems

– The NP-complete problems are the hardest problems in NP

– The problems that no one can solve them in a polynomial-

time
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time

– If a polynomial deterministic algorithm exists to solve an 

NP-complete problem, then all problems of class NP may 

be solved in polynomial time.



Reductions

� A problem A can be reduced to another problem B if 

any instance of A can be rephrased to an instance of B, 

the solution to which provides a solution to the 

instance of A

– This rephrasing is called a transformation

Intuitively: If A reduces in polynomial time to B, A 
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� Intuitively: If A reduces in polynomial time to B, A 

is “no harder to solve” than B

� Example: lcm(m, n) = m * n / gcd(m, n), 

lcm(m,n) (as A) problem is reduced to gcd(m, n) (as 

B) problem



Reductions

� Reduction is a way of saying that one problem is 

“easier” than another.

� We say that problem A is easier than problem B, 

(i.e., we write “A ≤p B”) 
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� Idea: transform the inputs of A to inputs of B

ffff Problem B
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Polynomial Reductions

� Given two problems A, B, we say that A is 

polynomially reducible to B (A ≤p B) if:

1. There exists a function f that converts the input of A to 

inputs of B in polynomial time

2. A(i) = YES ⇔ B(f(i)) = YES
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NP-Completeness (formally)

� A problem B is NP-complete if:

(1) B ∈ NP

(2) A ≤p B for all A ∈ NP

� If B satisfies only property (2) we say that B is NP-hard

P

NP

NP-complete
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� If B satisfies only property (2) we say that B is NP-hard

� No polynomial time algorithm has been discovered for an NP-

Complete problem

� No one has ever proven that no polynomial time algorithm can 

exist for any NP-Complete problem



Implications of Reduction

- If A ≤ B and B ∈ P, then A ∈ P

ffff Problem B
αααα ββββ
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Problem A
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- If A ≤p B and B ∈ P, then A ∈ P

- if A ≤p B and A ∉ P, then B ∉ P



Proving Polynomial Time

1. Use a polynomial time reduction algorithm to 

Polynomial time algorithm to decide A

ffff Polynomial time 

algorithm to decide B

αααα ββββ
yes

no

yes

no
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1. Use a polynomial time reduction algorithm to 

transform A into B

2. Run a known polynomial time algorithm for B

3. Use the answer for B as the answer for A



Proving NP-Completeness

Theorem: If A is NP-Complete and A ≤p B 

⇒ B is NP-Hard

In addition, if B ∈ NP 

⇒ B is NP-Complete
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⇒ B is NP-Complete



Revisit “Is P = NP?”

P

NP

NP-complete
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Theorem: If any NP-Complete problem can be solved in 

polynomial time ⇒ then P = NP.



Relation among P, NP, NPC

� P ⊆ NP  (Sure) 

� NPC ⊆ NP (sure)

� P = NP (or P ⊂ NP, or P ≠ NP) ???

� NPC = NP (or NPC ⊂ NP, or NPC ≠ NP) ???
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P & NP-Complete Problems

� Shortest simple path

– Given a graph G = (V, E) find a shortest path from a 

source to all other vertices

– Polynomial solution: O(VE)
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– Polynomial solution: O(VE)

� Longest simple path

– Given a graph G = (V, E) find a longest path from a source 

to all other vertices

– NP-complete



P & NP-Complete Problems

� Euler tour

– G = (V, E) a connected, directed graph find a cycle that 

traverses each edge of G exactly once (may visit a vertex 

multiple times) 

– Polynomial solution O(E)
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– Polynomial solution O(E)

� Hamiltonian cycle

– G = (V, E) a connected, directed graph find a cycle that 

visits each vertex of G exactly once

– NP-complete



NP-Hard Problems 

� NP-Hard problems 

– NP-hard stands for Nondeterministic Polynomial-time 

Hard

– Most of the real-world optimization problems are NP-hard 

for which provably efficient algorithms do not exist. 

– They require exponential time to be solved in optimality. 
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– They require exponential time to be solved in optimality. 

– Metaheuristics constitute an important alternative to solve 

this class of problems.

– NP-hard problems may be of any type: decision problems, 

search problems, or optimization problems.



NP-Hard Problems

� NP-hard problems do not necessarily belong to NP.

� An NP-hard problem that is in NP is said to be NP-complete.

Complexity of Problems



NP-Hard Problems

� Some examples 

Matrix permanent
Halting problem

Hamilton cycle
Steiner tree
Graph 3-coloring
Satisfiability
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…Satisfiability
Maximum clique
…

Factoring
Graph isomorphism
Minimum circuit size
…

Graph connectivity
Primality testing
Matrix determinant
Linear programming
…



Some NP-hard problems

� Sequencing and scheduling problems

– such as flow-shop scheduling, job-shop scheduling, or open-shop 

scheduling.

� Assignment and location problems 

– such as quadratic assignment problem (QAP), generalized assignment 

problem (GAP), location facility, and the p-median problem.

Grouping problems 
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� Grouping problems 

– such as data clustering, graph partitioning, and graph coloring.

� Routing and covering problems 

– such as vehicle routing problems (VRP), set covering problem (SCP), 

Steiner tree problem, and covering tour problem (CTP).

� Knapsack and packing/cutting problems, and so on.



NP-hard Problems 

� Integer programming models belong in general to the 

NP-hard class. 

� Unlike LP models, IP problems are difficult to solve 

because the feasible region is not a convex set.
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Complexity of Problems

� To become a good algorithm designer, you must 

understand the basics of the theory of NP-

completeness. 

� If you can establish a problem as NP-hard, you 

provide good evidence for its intractability. 

As an engineer, you would then do better spending 
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� As an engineer, you would then do better spending 

your time developing an approximation algorithm, 

rather than searching for a fast algorithm that solves 

the problem exactly. 

� Thus, it is important to become familiar with this 

remarkable class of problems.



NP-naming convention 

� NP-complete - means problems that are 'complete' in 

NP, i.e. the most difficult to solve in NP 

� NP-hard - stands for 'at least' as hard as NP (but not 

necessarily in NP); 

� NP-easy - stands for 'at most' as hard as NP (but not 

necessarily in NP); 
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necessarily in NP); 

� NP-equivalent - means equally difficult as NP, (but 

not necessarily in NP); 
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