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Introduction

� Real world linear programs having thousands of rows 

and columns. 

� In such problems, decomposition methods must be 

applied to convert the large problems into one or more 

appropriately smaller problems of manageable sizes. 

Decomposition methods

Decomposition Algorithms

� Decomposition methods

– Dantzig-Wolf decomposition technique

– Benders partitioning technique

– Lagrangian relaxation technique



Introduction

� The decomposition principle 

– is a systematic procedure for solving large-scale linear 

programs or 

– linear programs that contain constraints of special structure.

� The constraints are divided into two sets: 

– general constraints (or complicating constraints) and 
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– general constraints (or complicating constraints) and 

– constraints with special structure.



Introduction

� The strategy of the decomposition procedure is to 

operate on two separate linear programs: 

– one over the set of general constraints and 

– one over the set of special constraints. 

� Information is passed back and forth between the two 

linear programs until a point is reached where the 
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linear programs until a point is reached where the 

solution to the original problem is achieved. 

� Master problem vs. Subproblem

– The linear program over the general constraints is called the 

master problem, and 

– the linear program over the special constraints is called the 

subproblem. 



Introduction

� The master problem passes down a new set of cost 

coefficients to the subproblem and receives a new 

column based on these cost coefficients.
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Decomposition Algorithm

Decomposition Algorithms



Decomposition Algorithm

� Consider the following linear program:
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� where

– A is an m ä n matrix

– b is an m vector

– X is a polyhedral set representing constraints of special 

structure (assume that X is bounded)

– x is any point of X



Decomposition Algorithm

� Any point x œ X can be represented as a convex 

combination of the extreme points of X

� Denoting extreme points of X by x1, x2, . . . , xt

– Where t is the number of extreme points of the set X

� Any x œ X can be represented as:
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Decomposition Algorithm

� Substituting for x, the foregoing optimization problem 

can be transformed into the following so-called 

master problem in the variables λ1, λ2, …, λt
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Decomposition Algorithm

� Since t,  the number of extreme points of the set X, is 

usually very large, 

� Attempting to explicitly enumerate all the extreme 

points x1, x2, . . . , xt and explicitly solving this 

problem is a very difficult task. 

We shall attempt to find an optimal solution of the 

Decomposition Algorithms

� We shall attempt to find an optimal solution of the 

problem (and hence the original problem) without 

explicitly enumerating all the extreme points.



Application of the Revised Simplex 

Method
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Application of the Revised Simplex Method

� Suppose that we have a basic feasible solution 

λ = (λB, λN)

� Further suppose that the (m + 1) ä (m + 1) basis inverse B-1 is 

known 

� Denoting the dual variables w and a to constraints:
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Application of the Revised Simplex Method

� (w, a) = ĉB B-1 

– where ĉB is the cost of the basic variables with ĉj = cxj for 

each basic variable λj

– The basis inverse, the dual variables, the values of the basic 

variables, and the objective function are:
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– Where 



Application of the Revised Simplex Method

� The revised simplex method proceeds by concluding 

that the current solution is optimal or else by deciding 

to increase a nonbasic variable. 

� This is done by first calculating:
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Application of the Revised Simplex Method

� Since zj - ĉj = 0 for basic variables, then the foregoing 

maximum is ≥ 0. 

� Thus if zk - ĉk = 0, then zj - ĉj ≤ 0 for all nonbasic

variables and the optimal solution is at hand. 

� On the other hand, if zk - ĉk > 0, then the nonbasic

variable λ is increased.
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k k

variable λk is increased.



Application of the Revised Simplex Method

� Determining the index k using 

� computationally infeasible because t is very large and 

the extreme points xj's corresponding to the nonbasic

λj's are not explicitly known. 
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j

� Therefore an alternative scheme must be devised. 

� Since X is a bounded polyhedral set, the maximum of 

any linear objective can be achieved at one of the 

extreme points. Therefore



Application of the Revised Simplex Method

� To summarize, given a basic feasible solution (λB, λN) 

with dual variables (w, a), 

� solve the following linear subproblem, which is 

"easy" because of the special structure of X. 
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Application of the Revised Simplex Method

� Note that the objective function contains a constant. 

� This is easily handled by initializing the RHS value for 

z to a instead of the normal value of 0. 

� Let xk be an optimal solution to the foregoing 

subproblem with objective value zk - ĉk
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� If zk - ĉk = 0, then the basic feasible solution (λB, λN) is 

optimal. 

� Otherwise if zk - ĉk > 0, then the variable λk enters the 

basis. 



Application of the Revised Simplex Method

� As in the revised simplex method the corresponding 

column 

� is updated by premultiplying it by B-1 giving 
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� Note that yk ≤ 0 cannot occur since X was assumed 

bounded; producing a bounded master problem. 



Application of the Revised Simplex Method

� The updated column 

� is adjoined to the foregoing above array. 

� The variable λBr leaving the basis is determined by the 
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� The variable λBr leaving the basis is determined by the 

usual minimum ratio test. 

� The basis inverse, dual variables, and right RHS are 

updated by pivoting at yrk

� After updating, the process is repeated. 



Application of the Revised Simplex Method

� Note that the master step gives an improved feasible 

solution of the overall problem, and 

� The subproblem step checks whether zj - ĉj ≤ 0 for all 

λj or else determines the most positive zk - ĉk. 
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Summary of the Decomposition 

Algorithm
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Summary of the Decomposition Algorithm

� INITIALIZATION STEP

– Find an initial basic feasible solution of the system:
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Summary of the Decomposition Algorithm

– Let the basis be B and form the following master array

– The master array includes basis inverse, the dual variables, 
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– The master array includes basis inverse, the dual variables, 

the values of the basic variables, and the objective function

– Where (w, a) = ĉB B-1 with ĉj = cxj for each basic variable λj

– and



Summary of the Decomposition Algorithm

� MAIN STEP

– 1. Solve the following subproblem:

– Let x be an optimal basic feasible solution with objective 
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– Let xk be an optimal basic feasible solution with objective 

value of zk - ĉk

– If zk - ĉk = 0 stop, zj - ĉj ≤ 0 for all nonbasic variables and 

the optimal solution is at hand. 

– Otherwise (If zk - ĉk > 0 ) go to step 2. 

� The nonbasic variable λk is increased



Summary of the Decomposition Algorithm

– 2. Let

– and adjoin the updated column to the master array

– Pivot at yrk where the index r is determined as follows:  
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– Pivot at yrk where the index r is determined as follows:  

– This updates the dual variables, the basis inverse, and the 

right-hand side. 

– After pivoting, delete the column of λk and go to step 1. 



Some Remarks
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Some Remarks

� Note 1:

– The foregoing algorithm is a direct implementation of the 

revised simplex method except that the calculation zk - ĉk is 

performed by solving a subproblem. 

– Therefore the algorithm converges in a finite number of 

iterations provided that a cycling prevention rule is used in 
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iterations provided that a cycling prevention rule is used in 

both the master step and the subproblem in the presence of 

degeneracy.



Some Remarks

� Note 2:

– At each iteration the master step provides a new improved 

basic feasible solution of the system given by introducing 

the nonbasic variable λk, which is generated by the 

subproblem. 

– At each iteration the subproblem provides an extreme point 
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– At each iteration the subproblem provides an extreme point 

xk ,which corresponds to an updated column 

– and hence this procedure is sometimes referred to as a 

column generation scheme.



Some Remarks

� Note 3:

– At each iteration a different dual vector is passed from the 

master step to the subproblem. 

– Rather than solving the subproblem anew at each iteration, 

the optimal basis of the last iteration could be utilized by 

modifying the cost row.
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modifying the cost row.



Some Remarks

� Note 4:

– At each iteration, the subproblem need not be completely 

optimized. 

– It is only necessary that the current extreme point xk

satisfies 

z - ĉ (wA - c) x +a > 0
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zk - ĉk = (wA - c) xk +a > 0

– In this case λk is a candidate to enter the basis of the master 

problem. 



Some Remarks

� Note 5:

– If the master constraints are of the inequality type, then we 

must check the zj - ĉj  for nonbasic slack variables in 

addition to solving the subproblem. 

– For a master constraint i of the ≤ type with associated slack 

variables si we get:
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variables si we get:

– Thus, for a minimization problem a slack variable 

associated with a ≤ constraint is eligible to enter the basis if 

wi > 0. 

– The entry criterion is wi < 0 for constraints of the ≥ type.



Calculation and Use of Lower Bounds 
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Calculation and Use of Lower Bounds 

� Recall that the decomposition algorithm stops when 

Maximum zj - ĉj = 0. 

� Because of the large number of variables λ1 , λ2, ..., λt  

continuing the computations until this condition is 

satisfied may be time-consuming for large problems.

We shall develop a lower bound on the objective of 
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� We shall develop a lower bound on the objective of 

any feasible solution of the overall problem, and hence 

a lower bound on the optimal objective. 



Calculation and Use of Lower Bounds 

� Since the decomposition algorithm generates feasible 

points with improving objective values, we may stop 

when the difference between the objective of the 

current feasible point and the lower bound is within an 

acceptable tolerance. 

� This may not give the true optimal point, but will 
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� This may not give the true optimal point, but will 

guarantee good feasible solutions, within any desirable 

accuracy from the optimal. 



Calculation and Use of Lower Bounds 

� Consider the following subproblem:

– where w is the dual vector passed from the master step. 

� Let the optimal objective of the foregoing subproblem 
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� Let the optimal objective of the foregoing subproblem 

be zk - ĉk

� Now let x be any feasible solution of the overall 

problem, that is, Ax = b and x œ X. 



Calculation and Use of Lower Bounds 

� We have

� Since Ax = b, then the above inequality implies that
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� Since this is true for each x œ X with Ax = b, then



Calculation and Use of Lower Bounds 

� In other words, 

� is a lower bound on the optimal objective value of the 

overall problem.
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overall problem.



Numeric Example
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Numeric Example

� Consider the following problem:
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Numeric Example

� Note that:

– The third and fourth constraints involve only x1 and x2

– The fifth and sixth constraints involve only x3 and x4

� Let 

– X consist of the last four constraints, in addition to the 

nonnegativity restrictions, 
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nonnegativity restrictions, 

– then minimizing a linear function over X becomes a simple 

process, because the subproblem can be decomposed into 

two subproblems. 



Numeric Example

� We shall handle the first two constraints as:

Ax ≤ b

� where

Decomposition Algorithms



Initialization Step 

� The problem is reformulated as follows:
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� where x1, x2, . . . , xt are the extreme points of X, 

� ĉj = cxj for j = 1, 2, ..., t and 

� s ≥ 0 is the slack vector



Initialization Step 

� We need a starting basis with known B-1. 

� Let the starting basis consist of s and λ1, 

� Where x1 = (0, 0, 0, 0) is an extreme point of X with 

cx1 = 0. 

� Therefore:
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� Therefore:



Initialization Step 

� This gives the following tableau. 
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� The first three columns in row 0 give 

(w1, w2, a) and B-1 in the remaining rows. 



Iteration 1: SUBPROBLEM

� Solve the following subproblem

� Here (w1, w2) = (0, 0), Therefore the subproblem is as 

follows: 

Decomposition Algorithms



Iteration 1: SUBPROBLEM

– This problem is separable in the vectors (x1, x2) and (x3, x4) 

and can be solved geometrically. 
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– Representation of X by two sets.



Iteration 1: SUBPROBLEM

� It is easily verified that the optimal solution is 

� with objective 

� Since 
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� Since 

� Then λ2 corresponding to x2 is introduced. 

� The lower bound:

� Recall that the best objective so far is 0.



Iteration 1: MASTER STEP 

� MASTER STEP 
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� Then



Iteration 1: MASTER STEP 

� is updated by premultiplying by B-1 , So

� Insert the column
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� Insert the column

� into the foregoing array and pivot. 



Iteration 1: MASTER STEP 

� This leads to the following two tableaux
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Iteration 1: MASTER STEP 

� The best-known feasible solution of the overall 

problem is given 
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� The objective is

� Also



Iteration 2

� Iteration 2 

– Because the master constraints are of the inequality type, 

then we must check the zj - ĉj for nonbasic slack variables. 

– s1 is a nonbasic slack variavble

– Since w1 < 0, s1 is not qualified to enter the basis at this 

time. 
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time. 



Iteration 2: SUBPROBLEM

� SUBPROBLEM 

– Solve the following problem:
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– Therefore the subproblem is:



Iteration 2: SUBPROBLEM

� The problem decomposes into two problems involving 

(x1, x2) & (x3, x4). 

� Using the figure, the optimal solution is 

� with objective
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� with objective

� Since z3 - ĉ3 > 0, then λ3 is introduced. 

� The lower bound is:



Iteration 2: MASTER STEP

� MASTER STEP
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Iteration 2: MASTER STEP

� Insert the column 

– into the foregoing array and pivot. 

� This leads to the following two tableaux 
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� This leads to the following two tableaux 

� The λ3 column is deleted after pivoting.



Iteration 2: MASTER STEP
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Iteration 2: MASTER STEP

� The best-known feasible solution of the overall 

problem is given by:
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� The objective is: -4.9

� The dual variables are:



Iteration 3

� Iteration 3:

– Since w1 < 0, s1 is not qualified to enter the basis at this 

time. 
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Iteration 3: SUBPROBLEM

� SUBPROBLEM 

– Solve the following problem:
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– Therefore the subproblem is:



Iteration 3: SUBPROBLEM

� Using the figure, the optimal solution is 

� with objective

Since z - ĉ > 0, then λ is introduced. 
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� Since z4 - ĉ4 > 0, then λ4 is introduced. 

� The lower bound is:



Iteration 3: SUBPROBLEM

� Recall that the best-known objective so far is -4.9. 

� If we are interested only in an approximate solution, 

we could have stopped here with the feasible solution 
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– whose objective is -4.9. 

� Because the difference between the lower bound (-5.5) 

and the current objective value (-4.9) is small (-0.6).



Iteration 3: MASTER STEP

� MASTER STEP
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Iteration 3: MASTER STEP

� Insert the column 

– into the foregoing array and pivot. 

� This leads to the following two tableaux 
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� This leads to the following two tableaux 

� The λ3 column is deleted after pivoting.



Iteration 3: MASTER STEP
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Iteration 3: MASTER STEP

� The best-known feasible solution of the overall 

problem is given by:
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� The objective is: -5

� The dual variables are:



Iteration 4

� Iteration 4:

– Since w1 < 0 and w2 < 0, s1 and s2 is not qualified to enter 

the basis at this time. 
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Iteration 4: SUBPROBLEM

� SUBPROBLEM 

– Solve the following problem:
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– Therefore the subproblem is:



Iteration 4: SUBPROBLEM

� Using the figure, the optimal solution is 

� with objective

Since z - ĉ = 0, which is the termination criterion. 
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� Since z5 - ĉ5 = 0, which is the termination criterion. 

� Also note that the lower bound is 

� which is equal to the best (and therefore  optimal) 

solution known so far. 



Numeric Example

� Summary: 

– the optimal solution 

– With objective -5 is at hand. 
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Numeric Example
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Numeric Example

� The progress of the lower bounds and the objective 

values of the primal feasible solutions generated by the 

decomposition algorithm is shown 

� Optimality is reached at iteration 4. 

� If we were interested in an approximate solution, we 

could have stopped at iteration 3, 
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could have stopped at iteration 3, 

� Since we have a feasible solution with an objective 

value equal to -4.9, and meanwhile are assured (by the 

lower bound) that there exist no feasible solutions with 

an objective less than -5.5. 



Numeric Example

� The optimal point is shown, 
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The Case of Unbounded Region X
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The Case of Unbounded Region X

� For an unbounded set X, the decomposition algorithm 

must be slightly modified. 

� For an unbounded set X, the points in X can be 

represented as:

– a convex combination of the extreme points plus 
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– a nonnegative combination of the extreme directions



The Case of Unbounded Region X

� If set X is unbounded, x œ X if and only if:
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– x1, x2, ..., xt are the extreme points of X

– d1, d2, ..., dt are the extreme directions of X



The Case of Unbounded Region X

� The primal problem can be transformed as:
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� λ1, λ2, …, λt and µ1, µ2, …, µl  are variables



The Case of Unbounded Region X

� Suppose that we have a basic feasible solution of the 

foregoing system with basis B, and let w and a be the 

dual 

� variables corresponding to constraints G.5) and G.6) 

above. Further suppose
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Summary of the Decomposition Algorithm

� Let the basis be B and form the following master 

array

� The master array includes basis inverse, the dual variables, the 

values of the basic variables, and the objective function
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– Where (w, a) = ĉB B-1 with ĉj = cxj for each basic variable λj

– and



The Case of Unbounded Region X

� Recall that the current solution is optimal to the overall 

problem if zj - ĉj ≤ 0 for each variable. 

� In particular, the following conditions must hold at 

optimality:
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� if theses conditions do not hold, a nonbasic variable 

with a positive zk - ĉk to enter the basis, is found.



The Case of Unbounded Region X

� We may determine whether or not optimality 

conditions hold by solving the following subproblem:
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The Case of Unbounded Region X

� Suppose that the optimal solution of the subproblem is 

unbounded. 

� This is only possible if an extreme direction dk is 

found such that 

(wA – c)dk > 0 
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k

� Moreover, 

zk – ck = (wA - c)dk > 0 

� and µk is eligible to enter the basis. 



The Case of Unbounded Region X

� In this case            

� is updated by premultiplying by B-1 and the resulting 

column  
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column  

� inserted in the foregoing array and the revised simplex 

method is continued. 



Example: The Case of Unbounded 

Region X
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Region X



Example: The Case of Unbounded Region X

� Example:
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Example: The Case of Unbounded Region X

� The first constraint is handled as Ax ≤ b and the rest of the 

constraints are treated by X. 

� Note that X decomposes into the two sets of Figure. 
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Example: The Case of Unbounded Region X

� The problem is transformed into λ1, λ2, …, λt and µ1, 

µ2, …, µl , variables as follows:
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Example: The Case of Unbounded Region X

� Note that x1 = (0, 0, 0) belongs to X and 

Ax1 = 0 + 0 + 0 ≤ 12. 

� Therefore the initial basis consists of λ1 (corresponding 

to x,) plus the slack variable s. 

� This leads to the following array, where w = a = 0.
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� This leads to the following array, where w = a = 0.



Iteration 1: SUBPROBLEM

� Since w = a = 0 and A = (1, 1, 1):

Decomposition Algorithms



Iteration 1: SUBPROBLEM

� The problem decomposes into two problems in (x1, x2) 

and x3. The optimal value of x3 is 3. 

� The (x1, x2) problem can be solved  by the simplex 

method below, where x4 and x5 are the slack variables:
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Iteration 1: SUBPROBLEM

� The optimal is unbounded. 
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� The optimal is unbounded. 

� As x4 increases by 1 unit, x1 increases by 2 units and x2

increases by 1 unit

� In the (x1, x2) space we have found a direction leading 

to an unbounded solution. 



Iteration 1: SUBPROBLEM

� In the (x1, x2, x3) space, d1 is given by (2, 1, 0)t

� Also (wA - c) d1 = 4 

– (the negative of -4 in row 0 under x4) 

� So µ1, is introduced in the basis. 
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Iteration 1: MASTER STEP 
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Iteration 1: MASTER STEP 

� Introduce the column 

� in the master array and pivot. The µ1 column is eliminated after 

pivoting.
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Iteration 2

� Since w < 0, s is not a candidate to enter the basis.
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Iteration 2: SUBPROBLEM

� This reduces to the following:
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Iteration 2: SUBPROBLEM

� Here the value a = 0 is added to only one of the 

subproblems. 

� Obviously x3 = 0. 

� The new problem in (x1, x2) is solved by utilizing the 

corresponding tableau of the last iteration, deleting 

row 0, and introducing the new costs. 
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row 0, and introducing the new costs. 



Iteration 2: SUBPROBLEM
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Iteration 2: SUBPROBLEM

� The foregoing tableau is optimal (not unique). 

� The optimal objective of the subproblem is 

� and so λ2 corresponding to x2 is introduced. 

x2 = (x1, x2, x3) = (4, 6, 0)

Decomposition Algorithms

x2 = (x1, x2, x3) = (4, 6, 0)



Iteration 2: MASTER STEP 
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� Introduce the following column in the master array 

and pivot. The λ2 column is eliminated after pivoting.



Iteration 1: MASTER STEP 
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Iteration 3

� w < 0,  So s is still not a candidate to enter the basis. 

� Also the optimal solution of the last subproblem 

remains the same (see iteration 2). 

The objective value of     was for the previous dual 
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� The objective value of     was for the previous dual 

solution with a = 0. 

� For                 we have 

� which is the termination criterion, and the optimal 

solution is at hand. 



Iteration 3

� More specifically, the optimal x* is given by:
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Block Diagonal Structure
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Block Diagonal Structure

� When the set X has a block diagonal structure, X can 

itself be decomposed into several sets: 

X1, X2, ... , XT

– Each involving a subset of the variables, which do not 

appear in any other set. 

� The vectors x, c, and the matrix A of the master 
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� The vectors x, c, and the matrix A of the master 

constraints Ax = b, can be decomposed as:

x1, x2, ..., xT, 

c1, c2, ..., cT

A1, A2, ..., AT



Block Diagonal Structure
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Block Diagonal Structure

� For subproblem i, xi œ Xi if and only if:
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– where the xij, dij are the extreme points and the extreme 

directions of Xi. 



Block Diagonal Structure

� Replacing each xi, the original problem can be reformulated as 

follows: 
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Block Diagonal Structure

� Here we allow different convex combinations and 

linear combinations for each subproblem i since we 

have T convexity constraints. 

� This adds more flexibility but at the same time 

increases the number of constraints 

from m + 1 to m + T
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from m + 1 to m + T



Block Diagonal Structure

� Suppose that we have a basic feasible solution of the foregoing 

system with an (m + 1) ä (m + T) basis B. 

� Each basis must contain at least one variable λij from each block 

i. 

� Suppose that B-1 and the following values are known:
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Block Diagonal Structure

� The master array is:

� This solution is optimal if zij - ĉij ≤ 0 for each variable (naturally 
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� This solution is optimal if zij - ĉij ≤ 0 for each variable (naturally 

zij - ĉij = 0 for each basic variable). 

� In particular the following conditions must hold at optimality: 



Block Diagonal Structure

� Optimality conditions can be easily verified by solving 

the following subproblems.
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Block Diagonal Structure

� Each subproblem i is solved in turn. 

� If subproblem i yields an unbounded solution, 

– Such that (wAi – ci)dik > 0

– Then an extreme direction dik is a candidate to enter the 

master basis

– Introducing µ will improve the objective function 
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– Introducing µik will improve the objective function 

� If subproblem i yields a bounded optimal point 

– Such that wAixik + aaaai – cixik > 0

– Then an extreme point xik is a candidate to enter the master 

basis. 

– Introducing λik will improve the objective function 



Block Diagonal Structure

� When all subproblems have zij - ĉij ≤ 0 

– no  subproblem yields a candidate to enter the master basis

– then the optimal solution to the original problem is 

obtained.

� Otherwise, we must select one from among the various 

candidates to enter the master basis, We may use 
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candidates to enter the master basis, We may use 

– the rule of the most positive zik - ĉik

– the rule of first positive zik - ĉik

� we may stop solving the subproblems after the first candidate 

comes available



Calculation of Lower Bounds
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Calculation of Lower Bounds

� This is a natural extension of the case for one bounded 

subproblem presented earlier.

� Let x1, x2, ..., xT, represent a feasible solution of the 

overall problem 

� so that xi œ Xi for each i and SiAixi = b. 
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Calculation of Lower Bounds

� We have

� Summing on i we get
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� But Sicixi = cx and SiAixi = b, Thus we get

� or



Numeric Example
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Numeric Example
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Numeric Example

� The first two constraints are handled by Ax ≤ b, and 

the rest of the constraints are treated by X. 

� Note that X decomposes into two sets as shown:
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Numeric Example

� The problem is transformed into the following:
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Numeric Example

� Where

� That 

x11 = (x1, x2) = (0, 0) 

x = (x , x ) = (0, 0) 
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x21 = (x3, x4) = (0, 0) 

– belong to X1 and X2 and satisfy the master constraints. 

� Therefore we have a basic feasible solution of the 

overall system where the basis consists of s1, s2, λ11, 

and λ21



Numeric Example

� This leads to the following master array.
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� The first four entries of row 0 give w1, w2, a1, and a2

respectively. 

� Under these entries B-1 is stored.



Iteration 1: SUBPROBLEM

� Solve the following two subproblems:
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� Since w = (0, 0) and aaaa = (0, 0), these reduce to:

maximizing 2x1 + x2 + 0

maximizing 3x3 + x4 + 0 



Iteration 1: SUBPROBLEM

� The optimal solutions are respectively 

x12 = (x1, x2) = = (6, 0) with objective 12

x22 = (x3, x4) = (5, 0) with objective 15

� Then 

(wA1 – c1)x12 + a1 = 12
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(wA1 – c1)x12 + a1 = 12

(wA2 – c2)x22 + a2= 15

� Therefore λ12 and λ22 are both candidates to enter. 

� Select λ22 since z22 - ĉ22= 15 is the most positive. 



Iteration 1: MASTER PROBLEM 

� z22 - ĉ22= 15

� Form the column
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Iteration 1: MASTER PROBLEM 
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Iteration 2: SUBPROBLEM

� Check the zj - cj values for the nonbasic slack variables

– Since s2 just left the basis, it will not be a candidate to immediately 

reenter. 

� Solve the following two subproblems:
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� These problems reduce to the following:



Iteration 2: SUBPROBLEM

� The optimal solutions are:
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� Thus there is no candidate from subproblem 2 at this 

time and λ13 is a candidate to enter the master basis.



Iteration 2: MASTER PROBLEM
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Iteration 2: MASTER PROBLEM
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Iteration 3: SUBPROBLEM

� Check the zj - cj values for the nonbasic slack variables

– Since w1 < 0 and w2 < 0, neither s1 nor s2 are candidates to 

enter the basis. 

� Solve the following two subproblems.
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� These problems reduce to the following.



Iteration 3: SUBPROBLEM

� The optimal solutions are:
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� The optimal solution is reached. 



Iteration 3: SUBPROBLEM

� From the master problem the optimal point x* is given 

by:
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� Therefore x* = (x1, x2, x3, x4) = (4, 0, 2, 0) with 

objective - 14.



Economic Interpretation 
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Economic Interpretation 

� Consider the case of a large system that is composed of smaller 

subsystems 1, 2, ...,T

� Each subsystem i has its own objective

� The objective function of the overall system is the sum of the 

objective functions of the subsystems. 

� Each subsystem has its constraints designated by the set Xi, 
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� Each subsystem has its constraints designated by the set Xi, 

(which is assumed to be bounded for the purpose of 

simplification) 

� All the subsystems share a few common resources, and hence 

the consumption of these resources by all the subsystems must 

not exceed the availability given by the vector b. 



Economic Interpretation 

� Recall the following economic interpretation of the 

dual variables (Lagrangian multipliers). 

� Here wi is the rate of change of the objective as a 

function of bi

� If bi is replaced by bi + ∆, then the objective is 

modified by adding w ∆. 
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i i

modified by adding wi ∆. 

� Hence -wi can be thought of as the price of consuming 

one unit of the ith common resource. 

� Similarly, -a, can be thought of as the price of 

consuming a portion of the ith convexity constraint.



Economic Interpretation 

� The decomposition algorithm can be interpreted as 

follows: 

– With the current proposals of the subsystems, the 

superordinate (total system) obtains the optimal weights of 

these proposals and announces a set of prices for using the 

common resources. 
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common resources. 

– These prices are passed down to the subsystems, which 

modify their proposals according to these new prices. 



Economic Interpretation 

� A typical subsystem i solves the following 

subproblem:

� or equivalently:
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� or equivalently:



Economic Interpretation 

� The original objective of subsystem i is cixi. 

� The term -wAixi reflects the indirect price of using the 

common resources. 

� Aixi is the amount of the common resources consumed 

by the xi proposal. 
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i

� Since the price of using these resources is -w, then the 

indirect cost of using them is -wAixi, 

� And the total cost is (ci - wAi)xi

� The term -wAxi makes proposals that use much of the 

common resources unattractive from a cost point of 

view.  



Economic Interpretation 

� Subsystem i announces an optimal proposal xik

� If this proposal is to be considered, then the weight of 

the older proposals xij's must decrease in order to 

"make room" for this proposal; 

� That is, Sjλij must decrease from its present level of 1. 

Decomposition Algorithms

j ij

� The resulting saving is precisely ai. 

� If the cost of introducing the proposal xik is less than 

the saving realized; that is, if 

(ci – wAi)xik - ai < 0, or 

(wAi - ci)xik + ai > 0, 

– then the superordinate would consider this new proposal. 



Economic Interpretation 

� After all the subsystems introduce their new proposals, 

the superordinate calculates the optimum mix of these 

proposals and passes down new prices. 

� The process is repeated until none of the subsystems 

has a new attractive proposal; that is, when 

(c – wA )x - a ≥ 0 for each i
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(ci – wAi)xik - ai ≥ 0 for each i
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The End
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