In the name of God

Part 4. Decomposition Algorithms

4.4. Column Generation for the Constrained Shortest Path Problem

Spring 2010

Instructor: Dr. Masoud Yaghini

• We start by solving a constrained shortest path problem.

- c_{ij} : cost of arc (i, j)
- t_{ij} : traversal time arc (i, j)
- Our goal is to find a shortest path from node 1 to node 6 such that the total traversal time of the path does not exceed 14 time units.

• The integer program

$$z^{\star} := \min \sum_{\substack{(i,j) \in A}} c_{ij} x_{ij}$$

subject to
$$\sum_{\substack{j:(1,j) \in A}} x_{1j} = 1$$

$$\sum_{\substack{j:(i,j) \in A}} x_{ij} - \sum_{\substack{j:(j,i) \in A}} x_{ji} = 0 \qquad i = 2, 3, 4, 5$$

$$\sum_{\substack{i:(i,6) \in A}} x_{i6} = 1$$

$$\sum_{\substack{(i,j) \in A}} t_{ij} x_{ij} \le 14$$

$$x_{ij} = 0 \text{ or } 1 \quad (i,j) \in A$$

Decomposition

- Constraints:
 - One unit of flow has to leave the source
 - Flow conservation holds at all other nodes
 - One unit of flow has to enter the sink
 - With the time resource constraint
- There are **nine** possible paths, three of which consume too much time.
- The optimal integer solution is path 13246 of cost 13 with a traversal time of 13.

- The time resource constraint prevents us from solving our problem with a classical shortest path algorithm.
- In fact, no polynomial time algorithm is likely to exist since the resource constrained shortest path problem is NP-hard.

• If we ignore the time constraint, the easily tractable remainder is:

$$\begin{split} X &= \{ & \sum_{j:(1,j)\in A} x_{1j} = 1 \\ & \sum_{j:(i,j)\in A} x_{ij} - \sum_{j:(j,i)\in A} x_{ji} = 0 & i = 2, 3, 4, 5 \\ & \sum_{i:(i,6)\in A} x_{i6} = 1 \\ & x_{ij} = 0 \text{ or } 1 \quad (i,j) \in A \\ & \} \end{split}$$

- An extreme point $\mathbf{x}_{\mathbf{p}} = x_{pij}$ defined by the convex hull of *X* corresponds to a path $p \in P$ in the network.
- Any arc flow can be expressed as a convex combination of path flows:

$$x_{ij} = \sum_{p \in P} x_{pij} \lambda_p \quad (i, j) \in A$$
$$\sum_{p \in P} \lambda_p = 1$$
$$\lambda_p \ge 0 \quad p \in P.$$

• If we substitute for x_{ij} in:

$$z^{\star} := \min \sum_{(i,j) \in A} c_{ij} x_{ij}$$
$$\sum_{(i,j) \in A} t_{ij} x_{ij} \le 14$$

• We obtain the **master problem**:

$$z^{\star} = \min \sum_{p \in P} (\sum_{(i,j) \in A} c_{ij} x_{pij}) \lambda_p$$

subject to
$$\sum_{p \in P} (\sum_{(i,j) \in A} t_{ij} x_{pij}) \lambda_p \le 14$$
$$\sum_{p \in P} \lambda_p = 1$$
$$\lambda_p \ge 0 \qquad p \in P$$

• The cost coefficient of λ_p is the cost of path p and its coefficient in first constraint is path p's duration.

• We may recover a solution **x** to **original problem** from a master problem's solution by:

$$\sum_{p \in P} x_{pij} \lambda_p = x_{ij} \quad (i, j) \in A$$
$$x_{ij} = 0 \text{ or } 1 \quad (i, j) \in A$$

• Always integrality must hold for the original x variables.

• Associate dual variables with constraints:

$$z^{\star} = \min \sum_{p \in P} (\sum_{(i,j) \in A} c_{ij} x_{pij}) \lambda_p$$

dual variables
subject to
$$\sum_{p \in P} (\sum_{(i,j) \in A} t_{ij} x_{pij}) \lambda_p \leq 14 \quad \pi_1$$
$$\sum_{p \in P} \lambda_p = 1 \quad \pi_0$$
$$\lambda_p \geq 0 \qquad p \in P$$

- There are a problem with **nine path variables** and **two constraints**.
- For large networks, the cardinality of *P* becomes prohibitive, and we cannot even explicitly state all the variables of the master problem.

- The appealing idea of column generation is to work only with a sufficiently meaningful subset of variables, forming the so-called restricted master problem (RMP).
- More variables are added only when needed
- Like in the simplex method we have to find in every iteration a promising variable to enter the basis.

- In column generation an iteration consists:
 - (a) optimizing the restricted master problem in order to determine the current optimal objective function value \bar{z} and dual multipliers π , and
 - (b) finding, if there still is one, a variable p with negative reduced cost

$$\bar{c}_p = \sum_{(i,j)\in A} c_{ij} x_{pij} - \pi_1 \left(\sum_{(i,j)\in A} t_{ij} x_{pij}\right) - \pi_0 < 0$$

• The search for a minimum reduced cost variable amounts to optimizing a **subproblem**, precisely in our case: a shortest path problem in the network of :

• The subproblem:

$$\bar{c}^{\star} = \min \sum_{\substack{(i,j) \in A}} (c_{ij} - \pi_1 t_{ij}) x_{ij} - \pi_0$$

subject to
$$\sum_{\substack{j:(1,j) \in A}} x_{1j} = 1$$
$$\sum_{\substack{j:(i,j) \in A}} x_{ij} - \sum_{\substack{j:(j,i) \in A}} x_{ji} = 0 \qquad i = 2, 3, 4, 5$$
$$\sum_{\substack{i:(i,6) \in A}} x_{i6} = 1$$

$$x_{ij} = 0 \text{ or } 1 \quad (i,j) \in A - - -$$

Decompos

- Clearly, if $\bar{c}^* \ge 0$ there is no improving variable and the linear relaxation of the master problem is optimal
- Otherwise, the variable found is added to the **RMP** and we repeat.
- We now give full numerical details of the solution of our particular instance.

- *BBn.i* : iteration number *i* at node number *n* (*n* = 0 represents the root node).
- *p* : the index of path
- c_p : the cost of path p
- t_p : the duration of path p
- \bar{z} : the objective function value of restricted master problem
- π : dual variables
- \bar{c}^* : the objective function value of subproblem

• The linear programming relaxation of the master problem:

Iteration	Master Solution	\bar{z}	π_0	π_1	\bar{c}^{\star}	p	c_p	t_p	
BB0.1	$y_0 = 1$	100.0	100.00	0.00	-97.0	1246	3	18	
BB0.2	$y_0 = 0.22, \lambda_{1246} = 0.78$	24.6	100.00	-5.39	-32.9	1356	24	8	
BB0.3	$\lambda_{1246} = 0.6, \lambda_{1356} = 0.4$	11.4	40.80	-2.10	-4.8	13256	15	10	
BB0.4	$\lambda_{1246} = \lambda_{13256} = 0.5$	9.0	30.00	-1.50	-2.5	1256	5	15	
BB0.5	$\lambda_{13256} = 0.2, \lambda_{1256} = 0.8$	7.0	35.00	-2.00	0				
Arc flows: $x_{12} = 0.8, x_{13} = x_{32} = 0.2, x_{25} = x_{56} = 1$									

• Iteration 1

- Since we have no feasible initial solution at iteration BB0.1, we adopt a big-M approach and introduce an artificial variable y_0 with a large cost, say 100, for the convexity constraint.
- We do not have any path variables yet and the RMP contains two constraints and the artificial variable.
- This problem is solved by inspection: $y_0 = 1$; $\bar{z} = 100$, and the dual variables are $\pi_0 = 100$ and $\pi_1 = 0$.
- The subproblem returns path 1246 at reduced cost $\bar{c}^* = -97$, cost 3 and duration 18.

• Iteration 2

- In iteration BB0.2, the RMP contains two variables: y_0 and λ_{1246} .
- An optimal solution with $\bar{z} = 24.6$ is $y_0 = 0.22$ and $\lambda_{1246} = 0.78$, which is still infeasible.
- The dual variables assume values $\pi_0 = 100$ and $\pi_1 = -5.39$.
- Solving the subproblem gives the feasible path 1356 of reduced cost -32.9, cost 24, and duration 8.

- In total, four path variables are generated during the column generation process.
- In iteration BB0.5, we use 0.2 times the feasible path 13256 and 0.8 times the infeasible path 1256.
- The optimal objective function value is 7, with $\pi_0 = 35$ and $\pi_1 = -0.2$.
- The arc flow values provided at the bottom of Table are identical to those found when solving the LP relaxation of the original problem.

• In order to obtain integer solutions to our original problem, we have to embed column generation within a **branch-and-bound** framework.

- A subsequent branch-and-bound process is used to compute an optimal integer solution.
- To proceed, we have to start the reformulation and column generation again in each node.

- **First strategy**: a single arc flow variable of branching on fractional variables
 - branching on $x_{12} = 0.8$.
 - For $x_{12} = 0$, the impact on the RMP is that we have to remove path variables 1246 and 1256, that is, those paths which contain arc (1, 2).
 - In the subproblem, this arc is removed from the network.
 - On branch $x_{12} = 1$, arcs (1, 3) and (3, 2) cannot be used.
 - Generated paths which contain these arcs are discarded from the RMP, and both arcs are removed from the subproblem.

- Second strategy: involving more than a single arc flow variables
 - We branch on $x_{13} + x_{32} = 0.4$.
 - On branch $x_{13} + x_{32} = 0$, we simultaneously treat two flow variables; impacts on the RMP and the subproblem.
 - On branch $x_{13} + x_{32} = 1$, this constraint is first added to the original formulation.
 - We exploit again the path substructure *X*, go through the reformulation process, and obtain a new RMP to work with.
 - Details of the search tree are summarized in Table.

• The branch-and-bound decisions

Iteration	Master Solution	\overline{z}	π_0	π_1	π_2	\bar{c}^{\star}	p	c_p	t_p	
BB1: BB0 and $x_{13} + x_{32} = 0$										
BB1.1	$y_0 = 0.067, \lambda_{1256} = 0.933$	11.3	100	-6.33	_	0				
BB1.2	Big- M increased to 1000									
	$y_0 = 0.067, \lambda_{1256} = 0.933$	71.3	1000	-66.33	_	-57.3	12456	14	14	
BB1.3	$\lambda_{12456} = 1$	14	1000	-70.43	_	0				
BB2: BB0 and $x_{13} + x_{32} \ge 1$										
BB2.1	$\lambda_{1246} = \lambda_{13256} = 0.5$	9	15	-0.67	3.33	0				
Arc flows: $x_{12} = x_{13} = x_{24} = x_{25} = x_{32} = x_{46} = x_{56} = 0.5$										
BB3: BB2 and $x_{12} = 0$										
BB3.1	$\lambda_{13256} = 1$	15	15	0	0	-2	13246	13	13	
BB3.2	$\lambda_{13246} = 1$	13	13	0	0	0				
BB4: BB2 and $x_{12} = 1$										
BB4.1	$y_0 = 0.067, \lambda_{1256} = 0.933$	111.3	100	-6.33	100	0				
Infeasible arc flows										

References

References

 J. Desrosiers and M. E. Lubbecke, A Primer in Column Generation, G. Desaulniers, J. Desrosiers, and M. M. Solomon, eds., Springer-Verlag, New York, 2005, ch. 1, pp. 1–32.

The End