
In the name of GodIn the name of God

Part 3. ILOG CPLEX

3.4. CPLEX Java Applications

CPLEX Java Applications

3.4. CPLEX Java Applications

Spring 2010
Instructor: Dr. Masoud Yaghini



Outline

� Architecture of a CPLEX Java Application

� Compiling CPLEX Java Applications

� Solving the Model

� Accessing Solution Information

� Modeling by Column

CPLEX Java Applications

� Modeling by Column

� References



Architecture of a CPLEX Java 

Application

CPLEX Java Applications

Application



Architecture of a CPLEX Java Application

� ILOG Concert Technology 

– allows your application to call ILOG CPLEX directly, 

through the Java Native Interface (JNI). 

– This Java interface supplies a rich means for you to use 

Java objects to build your optimization model.

� IloCplex class implements the ILOG Concert 

CPLEX Java Applications

� IloCplex class implements the ILOG Concert 

Technology interface for:

– Creating variables and constraints

– Providing functionality for solving Mathematical 

Programing (MP) problems

– Accessing solution information



Architecture of a CPLEX Java Application

� ILOG Concert Technology interface

– For example, every variable in a model is represented by an 

object that implements the Concert Technology variable 

interface IloNumVar .

– The user code accesses the variable only through its 

Concert Technology interface.

CPLEX Java Applications

Concert Technology interface.

– Similarly, all other modeling objects are accessed only 

through their respective Concert Technology interfaces 

from the user-written application, while the actual objects 

are maintained in the ILOG CPLEX database.



Architecture of a CPLEX Java Application

� A view of Concert Technology for Java users

CPLEX Java Applications



Architecture of a CPLEX Java Application

� The ILOG CPLEX internals 

– Include the computing environment, its communication 

channels, and your problem objects.

CPLEX Java Applications



Architecture of a CPLEX Java Application

� Creating a Java application:

– Create a model of your problem

– Solve the model

– Accessing solution information

– Modifying the model explains

CPLEX Java Applications



Architecture of a CPLEX Java Application

� To use the ILOG CPLEX Java interfaces, you need to 

import the appropriate packages into your application, 

using:

import ilog.concert.*;

import ilog.cplex.*;

CPLEX Java Applications



Architecture of a CPLEX Java Application

� The structure of a Java application that calls ILOG CPLEX:

CPLEX Java Applications



Compiling CPLEX Java Applications

CPLEX Java Applications



Compiling CPLEX Java Applications

� cplex.jar

– containing the CPLEX Concert Technology class library.

� When compiling a Java application that uses ILOG 

Concert Technology, you need to inform the Java 

compiler where to find the file cplex.jar

CPLEX Java Applications

� You need to set up the path correctly so that the JVM

can locate the CPLEX shared library. 

-Djava.library.path=..\..\..\bin\x86_win32\



Compiling CPLEX Java Applications

� Add cplex.jar in NetBeans

CPLEX Java Applications



Compiling CPLEX Java Applications

� Set up the path correctly so that the JVM in NetBeans

CPLEX Java Applications



Modeling an Optimization Problem

CPLEX Java Applications



Modeling an Optimization Problem

� Classes:

– IloCplexModeler class

– IloCplex class

� Interfaces:

– IloModeler

CPLEX Java Applications

– IloMPModeler

� IloMPModeler extends IloModeler

– IloCPModeler

� IloCPModeler extends IloModeler



Modeling an Optimization Problem

� IloCplex class

– The class IloCplex extends IloCplexModeler.

– All the modeling methods in IloCplex derive from 

IloCplexModeler.

– IloCplex implements the solving methods.

– IloCplex implements these interfaces IloModeler and 

CPLEX Java Applications

– IloCplex implements these interfaces IloModeler and 

IloMPModeler



Modeling an Optimization Problem

� Modeling objects are created using methods of an 

instance of IloModeler or one of its extensions, such as 

IloMPModeler or IloCPModeler .

CPLEX Java Applications



Modeling an Optimization Problem

� Model will be an instance of IloCplex , and it is 

created like this:

IloCplex cplex = new IloCplex();

� Since class IloCplex implements IloMPModeler (and 

CPLEX Java Applications

� Since class IloCplex implements IloMPModeler (and 

thus its parent interface IloModeler ) all methods from 

IloMPModeler and IloModeler can be used for 

building a model.



Modeling an Optimization Problem

� IloModeler defines the methods to:

– create modeling variables of type integer, floating-point, or 

Boolean

– construct simple expressions using modeling variables

– create objective functions

– create ranged constraints, that is, constraints of the form:

CPLEX Java Applications

– create ranged constraints, that is, constraints of the form:



Variables in a model

� A modeling variable is represented by an object of 

type IloNumVar or one of its extensions.

� An example of the method is:

IloNumVar x = cplex.numVar(lb, ub, IloNumVarType.Float, "xname");

– This constructor method allows you to set all the attributes 

CPLEX Java Applications

– This constructor method allows you to set all the attributes 

of a variable: its lower and upper bounds, its type, and its 

name.

� intVar() method

– To create integer variables

� boolVar() method

– To create 0 / 1 variables



Modeling an Optimization Problem

� numVarArray(), intVarArray(), boolVarArray() 

Methods

– methods for creating a complete array of modeling 

variables at one time.

CPLEX Java Applications



Expressions

� Expressions

– Modeling variables are typically used in expressions that 

define constraints or objective functions. 

– Expressions are represented by objects of type IloNumExpr

– They are built using methods such as sum, prod, diff , 

negative, and square. 

CPLEX Java Applications

negative, and square. 

– For example, the expression:

x1 + 2*x2

– where x1 and x2 are IloNumVar objects, is constructed by 

this call:

IloNumExpr expr = cplex.sum(x1, cplex.prod(2.0, x2));



Ranged constraints

� Ranged constraints

– are constraints of the form: lb ≤ expression ≤ ub

– They are represented by objects of type IloRange

� The most general constructor is:

IloRange rng = cplex.range(lb, expr, ub, name);

CPLEX Java Applications

– lb and ub are double values, 

– expr is of type IloNumExpr

– name is a string.



Ranged constraints

� Ranged constraints can be used to model any of the 

more commonly found constraints of the form: 

expr relation rhs

– where relation is the relation =, ≤, or ≥. 

� The following table shows how to choose lb and ub for 

CPLEX Java Applications

modeling these relations: 



Ranged constraints

� The last column contains the method to use directly to 

create the appropriate ranged constraint. 

� For example, the constraint expr ≤ 1.0 is created by the 

call: 

IloRange le = cplex.le(expr, 1.0);

CPLEX Java Applications

� Again, all constructors for ranged constraints come in 

pairs, one constructor with and one without an 

argument for the name.



The objective function

� The objective function is represented by an object of 

type IloObjective. 

� Such objects are defined by:

– an optimization sense: is represented by an object of class 

IloObjectiveSense, and can take two values, 

IloObjectiveSense.Maximize

CPLEX Java Applications

� IloObjectiveSense.Maximize

� IloObjectiveSense.Minimize

– an expression: is represented by an IloNumExpr

– an optional name: is a string



The objective function

� For convenience, the methods maximize and minimize

are provided to create a maximization or minimization 

objective respectively, without using an 

IloObjectiveSense parameter, for example:

cplex.maximize(expr);

CPLEX Java Applications



The active model

� The active model is the model implemented by the IloCplex

object itself.

� The constraints and objective functions must be created and 

added to the active model.

� To facilitate this, for most constructors with a name such as 

ConstructorName, there is also a method addConstructorName

CPLEX Java Applications

ConstructorName, there is also a method addConstructorName

which immediately adds the newly constructed modeling object 

to the active model. 

� For example:

IloObjective obj = cplex.addMaximize(expr);

� is equivalent to:

IloObjective obj = cplex.add(cplex.maximize(expr));



Diet problem 

� Diet problem 

– consists of finding the least expensive diet using a set of 

foods such that all nutritional requirements are satisfied. 

� The example

– foodCost[j]: a unit cost of food j

– foodMin[j] & foodMax[j]: minimum and maximum amount 

CPLEX Java Applications

– foodMin[j] & foodMax[j]: minimum and maximum amount 

of food j which can be used in the diet

– nutrPerFood[i][j]: a nutritional value food j for nutrients i

– nutrMin[i] & nutrMax[i] : in the diet the amount of every 

nutrient i consumed must be within these bounds

– Buy[j] : the amount of food j to buy for the diet.



Diet problem 

� Then the objective is:

minimize Σj (Buy[j] * foodCost[j])

� The nutritional requirements, for all i :

nutriMin[i] ≤ Σj nutrPerFood[i][j] * Buy[j] ≤ nutriMax[i]

� Every food must be within its bounds, for all j :

CPLEX Java Applications

� Every food must be within its bounds, for all j :

foodMin[j] ≤ Buy[j] ≤ foodMax[j]

� The diet program:

– Diet.java



Diet problem 

� The example accepts a filename and two options -c

and -i as command line arguments.

� Option -i allows you to create a MIP model where the 

quantities of foods to purchase must be integers. 

� Option -c can be used to build the model by columns.

CPLEX Java Applications



Diet problem 

� The program starts by evaluating the command line 

arguments and reading the input data file.

� The input data of the diet problem is read from a file 

using an object of the embedded class Diet.Data . 

� Its constructor requires a file name as an argument. 

CPLEX Java Applications

� Using the class InputDataReader , it reads the data 

from that file. 

� This class does not use ILOG CPLEX or Concert 

Technology in any special way.



Diet problem 

� Exception handling

– In case of an error, ILOG CPLEX will throw an exception 

of type IloException or one of its subclasses. 

– Thus the entire ILOG CPLEX program is enclosed in 

try/catch statements. 

– The InputDataReader can throw exceptions of type 

CPLEX Java Applications

– The InputDataReader can throw exceptions of type 

java.io.IOException or 

InputDataReader.InputDataReaderException



Diet problem 

� cplex.end

– The call to the method cplex.end frees the memory that 

ILOG CPLEX uses.

CPLEX Java Applications



buildModelByRow Method

� The method accepts several arguments.

� model

– is used for two purposes:

� creating other modeling objects

� representing the model being created

data

CPLEX Java Applications

� data

– contains the data for the model to be built.

� Buy

– containing the model's variables

� type

– type of the variables being created



buildModelByRow Method

� Creating the modeling variables

– The method creates variables one by one, and storing them 

in array Buy . 

– Each variable j is initialized to have bounds data.foodMin[j]

and data.foodMax[j] and to be of type type.

� Constructing the objective function

CPLEX Java Applications

� Constructing the objective function

– The variables are used to construct the objective function 

expression with the method: 

model.scalProd(foodCost, Buy)

– This expression is immediately used to create the 

minimization objective which is directly added to the active 

model by addMinimize.



buildModelByRow Method

� Adding the nutritional constraints

– For each nutrient i the expression representing the amount 

of nutrient in a diet with food levels Buy is computed using: 

model.scalProd(nutrPerFood[i], Buy)

– This amount of nutrient must be within the ranged 

constraint bounds nutrMin[i] and nutrMax[i]. 

CPLEX Java Applications

constraint bounds nutrMin[i] and nutrMax[i]. 

– This constraint is created and added to the active model 

with addRange.



Solving the Model

CPLEX Java Applications



Solving the Model

� After creating an optimization problem in your active model, 

you solve it by means of the IloCplex object. 

� For an object named cplex , for example, you solve by calling 

the method like this:

cplex.solve();

� The solve method returns a Boolean value specifying whether 

CPLEX Java Applications

� The solve method returns a Boolean value specifying whether 

or not a feasible solution was found and can be queried. 

� When true is returned, the solution that was found may not be 

the optimal one; for example, the optimization may have 

terminated prematurely because it reached an iteration limit.



Solving the Model

� Additional information about a possible solution can 

be queried with the method getStatus

� Possible statuses:

– Error: an error occurred during the optimization.

– Unknown: the active model far enough to prove anything 

about it. A common reason may be that a time limit was 

CPLEX Java Applications

about it. A common reason may be that a time limit was 

reached.

– Feasible: A feasible solution for the model has been proven 

to exist. 

– Bounded: It has been proven that the active model has a 

finite bound in the direction of optimization. However, this 

does not imply the existence of a feasible solution.



Solving the Model

� Possible statuses (cont.):

– Optimal: The active model has been solved to optimality. 

The optimal solution can be queried.

– Infeasible: The active model has been proven to possess no 

feasible solution.

– Unbounded: The active model has been proven to be 

CPLEX Java Applications

– Unbounded: The active model has been proven to be 

unbounded. This does not include the notion that the model 

has been proven to be feasible. 

– Infeasible Or Unbounded: The active model has been 

proven to be infeasible or unbounded.



Accessing Solution Information

CPLEX Java Applications



Accessing Solution Information

� If a solution has been found with the solve method, 

you access it. 

� The objective function:

double objval = cplex.getObjValue();

� The values of individual modeling variables:

CPLEX Java Applications

� The values of individual modeling variables:

double x1 = cplex.getValue(var1);

� Solution values for an array of variables:

double[] x = cplex.getValues(vars);

� You can query slack values for the constraints by: 

IloCplex.getSlack or IloCplex.getSlacks



Diet problem 

� The diet program:

– Diet.java

CPLEX Java Applications



Exporting and Importing Models

� Exporting models

– The method IloCplex.exportModel writes the active model 

to a file. 

– The format of the file depends on the file extension in the 

name of the file. For example:

cplex.exportModel(“diet.lp"); 

CPLEX Java Applications

cplex.exportModel(“diet.lp"); 

� Importing models

– A model can be read by means of the method 

IloCplex.importModel . 

– Both these methods are documented more fully in the 

reference manual of the Java API.



Dual Solution Information

� When solving an LP, all the algorithms also compute 

dual solution information .

� You can access reduced costs by calling the method 

IloCplex.getReducedCost or 

IloCplex.getReducedCosts

You can access dual solution values for the ranged 

CPLEX Java Applications

� You can access dual solution values for the ranged 

constraints by using the methods:

IloCplex.getDual or 

IloCplex.getDuals .



Modeling by Column

CPLEX Java Applications



Modeling by Column

� The concept of modeling by column modeling comes 

from the matrix view of mathematical programming 

problems.

� The columns of the constraint matrix correspond to 

variables.

Modeling by column can be more generally 

CPLEX Java Applications

� Modeling by column can be more generally 

understood as using columns to hold a place for new 

variables to install in modeling objects



Modeling by Column

� Individual IloColumn objects define how to install a 

new variable in one existing modeling object and are 

created with one of the IloMPModeler.column

methods.

� Several IloColumn objects can be linked together 

(with the IloCplex.and method) to install a new 

CPLEX Java Applications

(with the IloCplex.and method) to install a new 

variable in all modeling objects in which it is to 

appear. 



Modeling by Column

� For example:

IloColumn col = 

cplex.column(obj,1.0).and(cplex.column(rng, 2.0));

– This creates a new variable and install it in the objective 

function represented by obj with a linear coefficient of 1.0 

and in the ranged constraint rng with a linear coefficient of 

CPLEX Java Applications

and in the ranged constraint rng with a linear coefficient of 

2.0 .

� After creating the proper column object, use it to 

create a new variable by passing it as the first 

parameter to the variable constructor. 

� The newly created variable will be immediately 

installed in existing modeling objects. 



Modeling by Column

� For example:

IloNumVar var = cplex.numVar(col, 0.0, 1.0);

– This creates a new variable with bounds 0.0 and 1.0 and 

immediately installs it in the objective obj with linear 

coefficient 1.0 and in the ranged constraint rng with linear 

coefficient 2.

CPLEX Java Applications

coefficient 2.

� Methods for constructing arrays of variables take an 

IloColumnArray object as a parameter that defines 

how each individual new variable is to be installed in 

existing modeling objects.



buildModelByColumn Method

� First, the method creates an empty minimization objective and 

empty ranged constraints, and adds them to the active model.

IloObjective cost = model.addMinimize();

IloRange[] constraint = new IloRange[nNutrs];

for (int i = 0; i < nNutrs; i++)

{

CPLEX Java Applications

{

constraint[i] = 

model.addRange(data.nutrMin[i], data.nutrMax[i]);

}

� Empty means that they use a 0 expression.



buildModelByColumn Method

� After that the variables are created one by one, and installed in 

the objective and constraints modeling by column. 

� For each variable, a column object must be created. 

� Start by creating a column object for the objective by calling:

IloColumn col = model.column(cost, data.foodCost[j]);

� The column is then expanded to include the coefficients for all 

CPLEX Java Applications

� The column is then expanded to include the coefficients for all 

the constraints using col.and with the column objects that are 

created for each constraint, as in the following loop:

for (int i = 0; i < nNutrs; i++) {

col = 

col.and(model.column(constraint[i], data.nutrPerFood[i][j]));

}



buildModelByColumn Method

� When the full column object has been constructed it is 

finally used to create and install the new variable like 

this:

Buy[j] = 

model.numVar(col, data.foodMin[j], data.foodMax[j], type);

CPLEX Java Applications

� The diet program:

– Diet.java



References

CPLEX Java Applications



References

� ILOG CPLEX, ILOG CPLEX User's Manual, ILOG 

CPLEX, 2008. 

� ILOG CPLEX, ILOG CPLEX Java API Reference 

Manual, ILOG CPLEX, 2008. 

CPLEX Java Applications



The End

CPLEX Java Applications


