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Architecture of a CPLEX Java Application

� ILOG Concert Technology 

– allows your application to call ILOG CPLEX directly, 

through the Java Native Interface (JNI). 

– This Java interface supplies a rich means for you to use 

Java objects to build your optimization model.

� IloCplex class implements the ILOG Concert 
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� IloCplex class implements the ILOG Concert 

Technology interface for:

– Creating variables and constraints

– Providing functionality for solving Mathematical 

Programing (MP) problems

– Accessing solution information



Architecture of a CPLEX Java Application

� ILOG Concert Technology interface

– For example, every variable in a model is represented by an 

object that implements the Concert Technology variable 

interface IloNumVar .

– The user code accesses the variable only through its 

Concert Technology interface.
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Concert Technology interface.

– Similarly, all other modeling objects are accessed only 

through their respective Concert Technology interfaces 

from the user-written application, while the actual objects 

are maintained in the ILOG CPLEX database.



Architecture of a CPLEX Java Application

� A view of Concert Technology for Java users
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Architecture of a CPLEX Java Application

� The ILOG CPLEX internals 

– Include the computing environment, its communication 

channels, and your problem objects.
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Architecture of a CPLEX Java Application

� Creating a Java application:

– Create a model of your problem

– Solve the model

– Accessing solution information

– Modifying the model explains
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Architecture of a CPLEX Java Application

� To use the ILOG CPLEX Java interfaces, you need to 

import the appropriate packages into your application, 

using:

import ilog.concert.*;

import ilog.cplex.*;
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Architecture of a CPLEX Java Application

� The structure of a Java application that calls ILOG CPLEX:
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Compiling CPLEX Java Applications
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Compiling CPLEX Java Applications

� cplex.jar

– containing the CPLEX Concert Technology class library.

� When compiling a Java application that uses ILOG 

Concert Technology, you need to inform the Java 

compiler where to find the file cplex.jar
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� You need to set up the path correctly so that the JVM

can locate the CPLEX shared library. 

-Djava.library.path=..\..\..\bin\x86_win32\



Compiling CPLEX Java Applications

� Add cplex.jar in NetBeans
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Compiling CPLEX Java Applications

� Set up the path correctly so that the JVM in NetBeans
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Modeling an Optimization Problem
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Modeling an Optimization Problem

� Classes:

– IloCplexModeler class

– IloCplex class

� Interfaces:

– IloModeler
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– IloMPModeler

� IloMPModeler extends IloModeler

– IloCPModeler

� IloCPModeler extends IloModeler



Modeling an Optimization Problem

� IloCplex class

– The class IloCplex extends IloCplexModeler.

– All the modeling methods in IloCplex derive from 

IloCplexModeler.

– IloCplex implements the solving methods.

– IloCplex implements these interfaces IloModeler and 
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– IloCplex implements these interfaces IloModeler and 

IloMPModeler



Modeling an Optimization Problem

� Modeling objects are created using methods of an 

instance of IloModeler or one of its extensions, such as 

IloMPModeler or IloCPModeler .
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Modeling an Optimization Problem

� Model will be an instance of IloCplex , and it is 

created like this:

IloCplex cplex = new IloCplex();

� Since class IloCplex implements IloMPModeler (and 
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� Since class IloCplex implements IloMPModeler (and 

thus its parent interface IloModeler ) all methods from 

IloMPModeler and IloModeler can be used for 

building a model.



Modeling an Optimization Problem

� IloModeler defines the methods to:

– create modeling variables of type integer, floating-point, or 

Boolean

– construct simple expressions using modeling variables

– create objective functions

– create ranged constraints, that is, constraints of the form:
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– create ranged constraints, that is, constraints of the form:



Variables in a model

� A modeling variable is represented by an object of 

type IloNumVar or one of its extensions.

� An example of the method is:

IloNumVar x = cplex.numVar(lb, ub, IloNumVarType.Float, "xname");

– This constructor method allows you to set all the attributes 
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– This constructor method allows you to set all the attributes 

of a variable: its lower and upper bounds, its type, and its 

name.

� intVar() method

– To create integer variables

� boolVar() method

– To create 0 / 1 variables



Modeling an Optimization Problem

� numVarArray(), intVarArray(), boolVarArray() 

Methods

– methods for creating a complete array of modeling 

variables at one time.
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Expressions

� Expressions

– Modeling variables are typically used in expressions that 

define constraints or objective functions. 

– Expressions are represented by objects of type IloNumExpr

– They are built using methods such as sum, prod, diff , 

negative, and square. 
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negative, and square. 

– For example, the expression:

x1 + 2*x2

– where x1 and x2 are IloNumVar objects, is constructed by 

this call:

IloNumExpr expr = cplex.sum(x1, cplex.prod(2.0, x2));



Ranged constraints

� Ranged constraints

– are constraints of the form: lb ≤ expression ≤ ub

– They are represented by objects of type IloRange

� The most general constructor is:

IloRange rng = cplex.range(lb, expr, ub, name);
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– lb and ub are double values, 

– expr is of type IloNumExpr

– name is a string.



Ranged constraints

� Ranged constraints can be used to model any of the 

more commonly found constraints of the form: 

expr relation rhs

– where relation is the relation =, ≤, or ≥. 

� The following table shows how to choose lb and ub for 
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modeling these relations: 



Ranged constraints

� The last column contains the method to use directly to 

create the appropriate ranged constraint. 

� For example, the constraint expr ≤ 1.0 is created by the 

call: 

IloRange le = cplex.le(expr, 1.0);
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� Again, all constructors for ranged constraints come in 

pairs, one constructor with and one without an 

argument for the name.



The objective function

� The objective function is represented by an object of 

type IloObjective. 

� Such objects are defined by:

– an optimization sense: is represented by an object of class 

IloObjectiveSense, and can take two values, 

IloObjectiveSense.Maximize
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� IloObjectiveSense.Maximize

� IloObjectiveSense.Minimize

– an expression: is represented by an IloNumExpr

– an optional name: is a string



The objective function

� For convenience, the methods maximize and minimize

are provided to create a maximization or minimization 

objective respectively, without using an 

IloObjectiveSense parameter, for example:

cplex.maximize(expr);
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The active model

� The active model is the model implemented by the IloCplex

object itself.

� The constraints and objective functions must be created and 

added to the active model.

� To facilitate this, for most constructors with a name such as 

ConstructorName, there is also a method addConstructorName
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ConstructorName, there is also a method addConstructorName

which immediately adds the newly constructed modeling object 

to the active model. 

� For example:

IloObjective obj = cplex.addMaximize(expr);

� is equivalent to:

IloObjective obj = cplex.add(cplex.maximize(expr));



Diet problem 

� Diet problem 

– consists of finding the least expensive diet using a set of 

foods such that all nutritional requirements are satisfied. 

� The example

– foodCost[j]: a unit cost of food j

– foodMin[j] & foodMax[j]: minimum and maximum amount 
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– foodMin[j] & foodMax[j]: minimum and maximum amount 

of food j which can be used in the diet

– nutrPerFood[i][j]: a nutritional value food j for nutrients i

– nutrMin[i] & nutrMax[i] : in the diet the amount of every 

nutrient i consumed must be within these bounds

– Buy[j] : the amount of food j to buy for the diet.



Diet problem 

� Then the objective is:

minimize Σj (Buy[j] * foodCost[j])

� The nutritional requirements, for all i :

nutriMin[i] ≤ Σj nutrPerFood[i][j] * Buy[j] ≤ nutriMax[i]

� Every food must be within its bounds, for all j :
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� Every food must be within its bounds, for all j :

foodMin[j] ≤ Buy[j] ≤ foodMax[j]

� The diet program:

– Diet.java



Diet problem 

� The example accepts a filename and two options -c

and -i as command line arguments.

� Option -i allows you to create a MIP model where the 

quantities of foods to purchase must be integers. 

� Option -c can be used to build the model by columns.
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Diet problem 

� The program starts by evaluating the command line 

arguments and reading the input data file.

� The input data of the diet problem is read from a file 

using an object of the embedded class Diet.Data . 

� Its constructor requires a file name as an argument. 

CPLEX Java Applications

� Using the class InputDataReader , it reads the data 

from that file. 

� This class does not use ILOG CPLEX or Concert 

Technology in any special way.



Diet problem 

� Exception handling

– In case of an error, ILOG CPLEX will throw an exception 

of type IloException or one of its subclasses. 

– Thus the entire ILOG CPLEX program is enclosed in 

try/catch statements. 

– The InputDataReader can throw exceptions of type 
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– The InputDataReader can throw exceptions of type 

java.io.IOException or 

InputDataReader.InputDataReaderException



Diet problem 

� cplex.end

– The call to the method cplex.end frees the memory that 

ILOG CPLEX uses.
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buildModelByRow Method

� The method accepts several arguments.

� model

– is used for two purposes:

� creating other modeling objects

� representing the model being created

data
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� data

– contains the data for the model to be built.

� Buy

– containing the model's variables

� type

– type of the variables being created



buildModelByRow Method

� Creating the modeling variables

– The method creates variables one by one, and storing them 

in array Buy . 

– Each variable j is initialized to have bounds data.foodMin[j]

and data.foodMax[j] and to be of type type.

� Constructing the objective function
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� Constructing the objective function

– The variables are used to construct the objective function 

expression with the method: 

model.scalProd(foodCost, Buy)

– This expression is immediately used to create the 

minimization objective which is directly added to the active 

model by addMinimize.



buildModelByRow Method

� Adding the nutritional constraints

– For each nutrient i the expression representing the amount 

of nutrient in a diet with food levels Buy is computed using: 

model.scalProd(nutrPerFood[i], Buy)

– This amount of nutrient must be within the ranged 

constraint bounds nutrMin[i] and nutrMax[i]. 
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constraint bounds nutrMin[i] and nutrMax[i]. 

– This constraint is created and added to the active model 

with addRange.



Solving the Model
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Solving the Model

� After creating an optimization problem in your active model, 

you solve it by means of the IloCplex object. 

� For an object named cplex , for example, you solve by calling 

the method like this:

cplex.solve();

� The solve method returns a Boolean value specifying whether 
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� The solve method returns a Boolean value specifying whether 

or not a feasible solution was found and can be queried. 

� When true is returned, the solution that was found may not be 

the optimal one; for example, the optimization may have 

terminated prematurely because it reached an iteration limit.



Solving the Model

� Additional information about a possible solution can 

be queried with the method getStatus

� Possible statuses:

– Error: an error occurred during the optimization.

– Unknown: the active model far enough to prove anything 

about it. A common reason may be that a time limit was 
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about it. A common reason may be that a time limit was 

reached.

– Feasible: A feasible solution for the model has been proven 

to exist. 

– Bounded: It has been proven that the active model has a 

finite bound in the direction of optimization. However, this 

does not imply the existence of a feasible solution.



Solving the Model

� Possible statuses (cont.):

– Optimal: The active model has been solved to optimality. 

The optimal solution can be queried.

– Infeasible: The active model has been proven to possess no 

feasible solution.

– Unbounded: The active model has been proven to be 
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– Unbounded: The active model has been proven to be 

unbounded. This does not include the notion that the model 

has been proven to be feasible. 

– Infeasible Or Unbounded: The active model has been 

proven to be infeasible or unbounded.



Accessing Solution Information
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Accessing Solution Information

� If a solution has been found with the solve method, 

you access it. 

� The objective function:

double objval = cplex.getObjValue();

� The values of individual modeling variables:
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� The values of individual modeling variables:

double x1 = cplex.getValue(var1);

� Solution values for an array of variables:

double[] x = cplex.getValues(vars);

� You can query slack values for the constraints by: 

IloCplex.getSlack or IloCplex.getSlacks



Diet problem 

� The diet program:

– Diet.java
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Exporting and Importing Models

� Exporting models

– The method IloCplex.exportModel writes the active model 

to a file. 

– The format of the file depends on the file extension in the 

name of the file. For example:

cplex.exportModel(“diet.lp"); 
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cplex.exportModel(“diet.lp"); 

� Importing models

– A model can be read by means of the method 

IloCplex.importModel . 

– Both these methods are documented more fully in the 

reference manual of the Java API.



Dual Solution Information

� When solving an LP, all the algorithms also compute 

dual solution information .

� You can access reduced costs by calling the method 

IloCplex.getReducedCost or 

IloCplex.getReducedCosts

You can access dual solution values for the ranged 
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� You can access dual solution values for the ranged 

constraints by using the methods:

IloCplex.getDual or 

IloCplex.getDuals .



Modeling by Column
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Modeling by Column

� The concept of modeling by column modeling comes 

from the matrix view of mathematical programming 

problems.

� The columns of the constraint matrix correspond to 

variables.

Modeling by column can be more generally 
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� Modeling by column can be more generally 

understood as using columns to hold a place for new 

variables to install in modeling objects



Modeling by Column

� Individual IloColumn objects define how to install a 

new variable in one existing modeling object and are 

created with one of the IloMPModeler.column

methods.

� Several IloColumn objects can be linked together 

(with the IloCplex.and method) to install a new 
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(with the IloCplex.and method) to install a new 

variable in all modeling objects in which it is to 

appear. 



Modeling by Column

� For example:

IloColumn col = 

cplex.column(obj,1.0).and(cplex.column(rng, 2.0));

– This creates a new variable and install it in the objective 

function represented by obj with a linear coefficient of 1.0 

and in the ranged constraint rng with a linear coefficient of 
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and in the ranged constraint rng with a linear coefficient of 

2.0 .

� After creating the proper column object, use it to 

create a new variable by passing it as the first 

parameter to the variable constructor. 

� The newly created variable will be immediately 

installed in existing modeling objects. 



Modeling by Column

� For example:

IloNumVar var = cplex.numVar(col, 0.0, 1.0);

– This creates a new variable with bounds 0.0 and 1.0 and 

immediately installs it in the objective obj with linear 

coefficient 1.0 and in the ranged constraint rng with linear 

coefficient 2.
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coefficient 2.

� Methods for constructing arrays of variables take an 

IloColumnArray object as a parameter that defines 

how each individual new variable is to be installed in 

existing modeling objects.



buildModelByColumn Method

� First, the method creates an empty minimization objective and 

empty ranged constraints, and adds them to the active model.

IloObjective cost = model.addMinimize();

IloRange[] constraint = new IloRange[nNutrs];

for (int i = 0; i < nNutrs; i++)

{
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{

constraint[i] = 

model.addRange(data.nutrMin[i], data.nutrMax[i]);

}

� Empty means that they use a 0 expression.



buildModelByColumn Method

� After that the variables are created one by one, and installed in 

the objective and constraints modeling by column. 

� For each variable, a column object must be created. 

� Start by creating a column object for the objective by calling:

IloColumn col = model.column(cost, data.foodCost[j]);

� The column is then expanded to include the coefficients for all 

CPLEX Java Applications

� The column is then expanded to include the coefficients for all 

the constraints using col.and with the column objects that are 

created for each constraint, as in the following loop:

for (int i = 0; i < nNutrs; i++) {

col = 

col.and(model.column(constraint[i], data.nutrPerFood[i][j]));

}



buildModelByColumn Method

� When the full column object has been constructed it is 

finally used to create and install the new variable like 

this:

Buy[j] = 

model.numVar(col, data.foodMin[j], data.foodMax[j], type);
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� The diet program:

– Diet.java
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The End
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