In the name of God

Part 3. ILOG CPLEX

3.4. CPLEX Java Applications

Spring 2010

Instructor: Dr. Masoud Yaghini

CPLEX Java Applications

Outline

e Architecture of a CPLEX Java Application
e Compiling CPLEX Java Applications

e Solving the Model

e Accessing Solution Information

e Modeling by Column

e References

CPLEX Java Applications

Architecture of a CPLEX Java
Application

CPLEX Java Applications

Architecture of a CPLEX Java Application

e ILOG Concert Technology

— allows your application to call ILOG CPLEX directly,
through the Java Native Interface (JNI).

— This Java interface supplies a rich means for you to use
Java objects to build your optimization model.

e lloCplex class implements the ILOG Concert
Technology interface for:
— Creating variables and constraints

— Providing functionality for solving Mathematical
Programing (MP) problems

— Accessing solution information

CPLEX Java Applications

Architecture of a CPLEX Java Application

e ILOG Concert Technology interface

— For example, every variable in a model is represented by an
object that implements the Concert Technology variable
interface [loNumVar .

— The user code accesses the variable only through its
Concert Technology interface.

— Similarly, all other modeling objects are accessed only
through their respective Concert Technology interfaces

from the user-written application, while the actual objects
are maintained in the ILOG CPLEX database.

CPLEX Java Applications

Architecture of a CPLEX Java Application

e A view of Concert Technology for Java users

User-Written Application

|

|

| Concert Technology |
| modeling interfaces | lloC plex

|

|

ILOG CPLEX internals

CPLEX Java Applications

Architecture of a CPLEX Java Application

e The ILOG CPLEX internals

— Include the computing environment, its communication
channels, and your problem objects.

CPLEX Java Applications

Architecture of a CPLEX Java Application

e Creating a Java application:
— Create a model of your problem
— Solve the model
— Accessing solution information

— Modifying the model explains

CPLEX Java Applications

Architecture of a CPLEX Java Application

e To use the ILOG CPLEX Java interfaces, you need to
import the appropriate packages into your application,
using:
import 1log.concert.*;

import 1log.cplex.™;

CPLEX Java Applications

Architecture of a CPLEX Java Application

e The structure of a Java application that calls ILOG CPLEX:

import ilog.concert.*;
import ilog.cplex.*;
static public class Application {
static public main(String[] args) {
try {
TloCplex cplex = new IloCplex();
// create model and solve it
} catch (IloException e) ({
System.err.println ("Concert exception caught: " + e);

CPLEX Java Applications

Compiling CPLEX Java Applications

CPLEX Java Applications

Compiling CPLEX Java Applications

e cplex.jar
— containing the CPLEX Concert Technology class library.

e When compiling a Java application that uses ILOG
Concert Technology, you need to inform the Java
compiler where to find the file cplex.jar

e You need to set up the path correctly so that the JVM
can locate the CPLEX shared library.

-Djava.library.path=..\..\..\bin\x86_ win32\

CPLEX Java Applications

Compiling CPLEX Java Applications

e Add cplex.jar in NetBeans

CPLEX|

-
EJ Project Properties - LPexl

- W W eEwTEaRT T v e

— —z)

Categories:

----- 2 Sources

----- o

=l @ Build
= 2 Campiling
= 2 Packaging
Y Dacumenting

----- 2 Run

= @ Application
o O Web Start

Java Platfarm: .:J-DK 1.6 (Default)

Compile | Run I Compile Tests I Rur Tests|

s

Manage Flatfarms. ..]

Campile-time Libraries:

CAILOG|CPLEXT 1 1lib\cplex. jar

Add Project. ..]

[
’ Add Library. ..]
|

Add JAR [Folder]

Remove

Move Up

Mave Down

Campile-time libraries are propagated to all library categaories.

Build Projects an Classpath

Ok

” Cancel ” Help

Compiling CPLEX Java Applications

e Set up the path correctly so that the JVM in NetBeans

i X B
E] Project Properties - LPEyRow - .. -e “ Fen -e " . . - M
Categories:
----- @ Sources :
Configuration: | <default canfig= e Delete
..... [} L|br’ar’|es - g . g “ —
=~ 2 Build

’ @ Compiling Main Class: LPByRoW

i~ @ Packaging

‘. @ Documenting Arguments:

----- D Ly

B- @ Application Waorling Directory:
b O Web Start VM Dptions: -Djava.library. path=C:\ILOG|CPLEX111\bin|x86_win32}

(e.g. -¥ms10m)

Run with Java Web Start

Hink: To run and debug the application with Java Web Skart, first enable Java Web Start

O, H Cancel][Help

CPL

Modeling an Optimization Problem

CPLEX Java Applications

Modeling an Optimization Problem

e (Classes:
— TloCplexModeler class
— IloCplex class

e Interfaces:
— TloModeler

— TloMPModeler
¢ IloMPModeler extends IloModeler

— JloCPModeler
¢ IloCPModeler extends [loModeler

CPLEX Java Applications

Modeling an Optimization Problem

e [loCplex class
— The class [loCplex extends [loCplexModeler.

— All the modeling methods in [loCplex derive from
IloCplexModeler.

— IloCplex implements the solving methods.

— lIloCplex implements these interfaces [loModeler and
I[loMPModeler

CPLEX Java Applications

Modeling an Optimization Problem

e Modeling objects are created using methods of an

instance of [loModeler or one of its extensions, such as
I[loMPModeler or IloCPModeler .

CPLEX Java Applications

Modeling an Optimization Problem

e Model will be an instance of IloCplex , and 1t 1s
created like this:

[loCplex cplex = new IloCplex();

e Since class [loCplex implements [loMPModeler (and
thus 1ts parent interface IlloModeler) all methods from

[loMPModeler and IloModeler can be used for
building a model.

CPLEX Java Applications

Modeling an Optimization Problem

e [loModeler defines the methods to:

— create modeling variables of type integer, floating-point, or
Boolean

— construct simple expressions using modeling variables
— create objective functions

— create ranged constraints, that 1s, constraints of the form:

CPLEX Java Applications

Variables in a model

e A modeling variable 1s represented by an object of
type IloNumVar or one of 1its extensions.

e An example of the method is:
IloNumVar x = cplex.numVar(lb, ub, [loNumVarType.Float, "xname");

— This constructor method allows you to set all the attributes
of a variable: its lower and upper bounds, its type, and its
name.

e intVar() method

— To create integer variables

e boolVar() method

— To create 0/ 1 variables

CPLEX Java Applications

Modeling an Optimization Problem

e numVarArray(), intVarArray(), boolVarArray()
Methods

— methods for creating a complete array of modeling
variables at one time.

CPLEX Java Applications

Expressions

e Expressions

Modeling variables are typically used in expressions that
define constraints or objective functions.

Expressions are represented by objects of type [loNumExpr

They are built using methods such as sum, prod, diff
negative, and square.

For example, the expression:
x1 + 2%x2

where x1 and x2 are [loNumVar objects, is constructed by
this call:

[loNumEXxpr expr = cplex.sum(x1, cplex.prod(2.0, x2));

CPLEX Java Applications

Ranged constraints

e Ranged constraints
— are constraints of the form: Ib < expression < ub
— They are represented by objects of type [loRange
e The most general constructor 1s:

IloRange rng = cplex.range(lb, expr, ub, name);

— b and ub are double values,
— expr 1s of type [loNumExpr

— name 1s a string.

CPLEX Java Applications

Ranged constraints

e Ranged constraints can be used to model any of the
more commonly found constraints of the form:

expr relation rhs
— where relation 1s the relation =, <, or >.

e The following table shows how to choose 1b and ub for
modeling these relations:

relation b ub method
= rhs rhs edq
= —DDﬂblE.HAR_?ALUE rh=s 1=

2 rhs Double .MAX VALUE ge

CPLEX Java Applications

Ranged constraints

e The last column contains the method to use directly to
create the appropriate ranged constraint.

e For example, the constraint expr < 1.0 1s created by the
call:

[loRange le = cplex.le(expr, 1.0);

e Again, all constructors for ranged constraints come 1n
pairs, one constructor with and one without an
argument for the name.

CPLEX Java Applications

The objective function

e The objective function 1s represented by an object of
type IloObjective.

e Such objects are defined by:

— an optimization sense: is represented by an object of class
[loObjectiveSense, and can take two values,

¢ IloObjectiveSense.Maximize

¢ IloObjectiveSense.Minimize
— an expression: is represented by an [loNumExpr

— an optional name: is a string

CPLEX Java Applications

The objective function

e For convenience, the methods maximize and minimize
are provided to create a maximization or minimization
objective respectively, without using an
[loObjectiveSense parameter, for example:

cplex.maximize(expr);

CPLEX Java Applications

The active model

e The active model is the model implemented by the [loCplex
object itself.

e The constraints and objective functions must be created and
added to the active model.

e To facilitate this, for most constructors with a name such as
ConstructorName, there 1s also a method addConstructorName
which immediately adds the newly constructed modeling object
to the active model.

e For example:
[loObjective obj = cplex.addMaximize(expr);
e is equivalent to:

IloObjective obj = cplex.add(cplex.maximize(expr));

CPLEX Java Applications

Diet problem

e Diet problem

consists of finding the least expensive diet using a set of
foods such that all nutritional requirements are satistied.

e The example

foodCost[}]: a unit cost of food |

foodMin[j] & foodMax[j]: minimum and maximum amount
of food j which can be used 1n the diet

nutrPerFood|[1][j]: a nutritional value food j for nutrients 1

nutrMin[1] & nutrMax|[1] : in the diet the amount of every
nutrient 1 consumed must be within these bounds

Buy/j] : the amount of food j to buy for the diet.

CPLEX Java Applications

Diet problem

e Then the objective 1s:
minimize %; (Buylj] * foodCost[j])
e The nutritional requirements, for all 1 :
nutriMin[1] < X, nutrPerFood[1][j] * Buy[j] < nutriMax|1]
e Every food must be within its bounds, for all j :
foodMin[j] < Buy[j] < foodMax[j]

e The diet program:

— Diet.java

CPLEX Java Applications

Diet problem

e The example accepts a filename and two options -c
and -1 as command line arguments.

e Option -1 allows you to create a MIP model where the
quantities of foods to purchase must be integers.

e Option -c can be used to build the model by columns.

CPLEX Java Applications

Diet problem

e The program starts by evaluating the command line
arguments and reading the input data file.

e The input data of the diet problem 1s read from a file
using an object of the embedded class Diet.Data .

e Its constructor requires a file name as an argument.

e Using the class InputDataReader , it reads the data
from that file.

e This class does not use ILOG CPLEX or Concert
Technology 1n any special way.

CPLEX Java Applications

Diet problem

e Exception handling

— In case of an error, ILOG CPLEX will throw an exception
of type [loException or one of its subclasses.

— Thus the entire ILOG CPLEX program 1s enclosed in
try/catch statements.

— The InputDataReader can throw exceptions of type
java.i0.JOException or
InputDataReader.InputDataReaderException

CPLEX Java Applications

Diet problem

e cplex.end

— The call to the method cplex.end frees the memory that
ILOG CPLEX uses.

CPLEX Java Applications

buildModelByRow Method

e The method accepts several arguments.

e model

— 1s used for two purposes:
¢ creating other modeling objects

¢ representing the model being created
e data
— contains the data for the model to be built.
e Buy
— containing the model's variables

® (ype

— type of the variables being created

CPLEX Java Applications

buildModelByRow Method

e Creating the modeling variables
— The method creates variables one by one, and storing them
in array Buy .

— Each variable j 1s initialized to have bounds data.foodMin[j]
and data.foodMax[j] and to be of type type.

e Constructing the objective function

— The variables are used to construct the objective function

expression with the method:
model.scalProd(foodCost, Buy)

— This expression 1s immediately used to create the
minimization objective which 1s directly added to the active
model by addMinimize.

CPLEX Java Applications

buildModelByRow Method

e Adding the nutritional constraints

— For each nutrient 1 the expression representing the amount
of nutrient in a diet with food levels Buy 1s computed using:
model.scalProd(nutrPerFood|[1], Buy)

— This amount of nutrient must be within the ranged
constraint bounds nutrMin[1] and nutrMax|1].

— This constraint is created and added to the active model
with addRange.

CPLEX Java Applications

Solving the Model

CPLEX Java Applications

Solving the Model

e After creating an optimization problem in your active model,
you solve it by means of the [loCplex object.

e For an object named cplex , for example, you solve by calling
the method like this:

cplex.solve();

e The solve method returns a Boolean value specifying whether
or not a feasible solution was found and can be queried.

e When true 1s returned, the solution that was found may not be
the optimal one; for example, the optimization may have
terminated prematurely because it reached an iteration limit.

CPLEX Java Applications

Solving the Model

e Additional information about a possible solution can
be queried with the method getStatus

e Possible statuses:
— Error: an error occurred during the optimization.

— Unknown: the active model far enough to prove anything
about it. A common reason may be that a time limit was
reached.

— Feasible: A feasible solution for the model has been proven
to exist.

— Bounded: It has been proven that the active model has a
finite bound 1n the direction of optimization. However, this
does not imply the existence of a feasible solution.

CPLEX Java Applications

Solving the Model

e Possible statuses (cont.):

— Optimal: The active model has been solved to optimality.
The optimal solution can be queried.

— Infeasible: The active model has been proven to possess no
feasible solution.

— Unbounded: The active model has been proven to be
unbounded. This does not include the notion that the model
has been proven to be feasible.

— Infeasible Or Unbounded: The active model has been
proven to be infeasible or unbounded.

CPLEX Java Applications

Accessing Solution Information

CPLEX Java Applications

Accessing Solution Information

e If a solution has been found with the solve method,
you access it.

e The objective function:
double objval = cplex.getObjValue();

e The values of individual modeling variables:
double x1 = cplex.getValue(varl);

e Solution values for an array of variables:
double[] x = cplex.getValues(vars);

® You can query slack values for the constraints by:
[loCplex.getSlack or IloCplex.getSlacks

CPLEX Java Applications

Diet problem

e The diet program:

— Diet.java

CPLEX Java Applications

Exporting and Importing Models

e Exporting models

— The method [loCplex.exportModel writes the active model
to a file.

— The format of the file depends on the file extension in the
name of the file. For example:

cplex.exportModel(“diet.lp");
e Importing models

— A model can be read by means of the method
IloCplex.importModel .

— Both these methods are documented more fully in the
reference manual of the Java API.

CPLEX Java Applications

Dual Solution Information

e When solving an LP, all the algorithms also compute
dual solution information .

® You can access reduced costs by calling the method
[loCplex.getReducedCost or
[loCplex.getReducedCosts

® You can access dual solution values for the ranged
constraints by using the methods:

[loCplex.getDual or
[loCplex.getDuals .

CPLEX Java Applications

Modeling by Column

CPLEX Java Applications

Modeling by Column

e The concept of modeling by column modeling comes
from the matrix view of mathematical programming
problems.

e The columns of the constraint matrix correspond to
variables.

e Modeling by column can be more generally
understood as using columns to hold a place for new
variables to install in modeling objects

CPLEX Java Applications

Modeling by Column

e Individual IloColumn objects define how to install a
new variable 1n one existing modeling object and are
created with one of the [loMPModeler.column
methods.

e Several [loColumn objects can be linked together
(with the IloCplex.and method) to install a new
variable in all modeling objects in which it 1s to
appear.

CPLEX Java Applications

Modeling by Column

e For example:

IloColumn col =
cplex.column(obj,1.0).and(cplex.column(rng, 2.0));

— This creates a new variable and install it in the objective
function represented by obj with a linear coeftticient of 1.0
and 1n the ranged constraint rng with a linear coefficient of

2.0.
e After creating the proper column object, use it to
create a new variable by passing it as the first
parameter to the variable constructor.

e The newly created variable will be immediately
installed 1n existing modeling objects.

CPLEX Java Applications

Modeling by Column

e For example:

[loNumVar var = cplex.numVar(col, 0.0, 1.0);

— This creates a new variable with bounds 0.0 and 1.0 and
immediately installs 1t in the objective obj with linear
coefficient 1.0 and in the ranged constraint rng with linear
coeftficient 2.

e Methods for constructing arrays of variables take an
[loColumnArray object as a parameter that defines

how each individual new variable 1s to be installed in
existing modeling objects.

CPLEX Java Applications

buildModelByColumn Method

e First, the method creates an empty minimization objective and
empty ranged constraints, and adds them to the active model.

[loObjective cost = model.addMinimize();
IloRange|] constraint = new IloRange[nNutrs];
for (int1 = 0; 1 < nNutrs; 1++)

{

constraint[i] =
model.addRange(data.nutrMin[1], data.nutrMax[1]);

J

e Empty means that they use a 0 expression.

CPLEX Java Applications

buildModelByColumn Method

e After that the variables are created one by one, and installed in
the objective and constraints modeling by column.

e For each variable, a column object must be created.
e Start by creating a column object for the objective by calling:
IloColumn col = model.column(cost, data.foodCost[j]);

e The column 1s then expanded to include the coefficients for all
the constraints using col.and with the column objects that are
created for each constraint, as in the following loop:

for (int1 = 0; 1 < nNutrs; 1++) {

col =
col.and(model.column(constraint[i], data.nutrPerFood[i][j]));

J

CPLEX Java Applications

buildModelByColumn Method

e When the full column object has been constructed it 1s
finally used to create and install the new variable like
this:

Buy[j] =
model.numVar(col, data.foodMin[j], data.foodMax[j], type);

e The diet program:

— Diet.java

CPLEX Java Applications

References

CPLEX Java Applications

References

e ILOG CPLEX, ILOG CPLEX User's Manual, ILOG
CPLEX, 2008.

e [LOG CPLEX, ILOG CPLEX Java API Reference
Manual, ILOG CPLEX, 2008.

CPLEX Java Applications

The End

CPLEX Java Applications

