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The Linear Programming Problem
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Basic Definitions

e Linear programming problem
— A problem of minimizing or maximizing a linear function

— 1in the presence of linear constraints of the inequality
and/or the equality type.
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Basic Definitions

e Formulation of LP problem:
— Identify the decision variables.

— Identify the problem constraints and express the
constraints as a series of linear equations.

— Identify the objective function as a linear equation, and
state whether the objective is maximization or
minimization.
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Basic Definitions

e A linear programming problem

Minimize c¢x,+ c¢x,+ - + ¢, x,

Subject to a,,x;+ a;px,+ - - + a,x,> b,
Ay Xy + Ay Xy+ - -+ +ay,X, 2 b,
dmlxl+am2x2+ et +amnxn> bm

X{ s, Xgs e x, 2 0
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Basic Definitions

e Objective function

— Here ¢;x; + ¢c,x, +, ..., + ¢,x,, 1S the objective function to be
minimized and will be denoted by z.

e Cost coefficients
— The coeftticients ¢, ¢,, . . ., ¢, are the cost coefficients

e Decision variables

— X, Xy ..., X, are the decision variables (variables, or
activity levels) to be determined.

e Constraints

— The ine.quality E;; @, > b, denotes the i th
constraint.
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Basic Definitions

e Technological coefficients
— The coefficients a; fori=1,2,...,mj=1,2,...,nare
called the technological coefficients.

— These technological coefficients form the constraint matrix
A given below.

ay i 4,
1 Gdp T 4y,
A=| |, :
i A1 A2 Aynn i
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Basic Definitions

e Right-hand-side vector

— The column vector whose i th component 1s b, which 1s
referred to as the right-hand-side vector, represents the
minimal requirements to be satisfied.

e Nonnegativity constraints

— The constraints x;, x,, . . ., x, > 0 are the nonnegativity
constraints.
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Basic Definitions

e Feasible point / feasible vector

A set of variables x,, . . ., x, satisfying all the constraints 1s
called a feasible point or a feasible vector.

e Feasible region

The set of all feasible points constitutes the feasible region
or the feasible space.

e The linear programming problem

Among all feasible vectors, find that which minimizes (or
maximizes) the objective function.
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Assumptions of Linear Programming

e Proportionality

— The contribution of each activity to the value of the
objective function or constraint is proportional to the level
of the activity

— No savings (or extra costs) are realized by using more of an
activity
— No setup cost, for starting the activity 1s realized.
o Additivity

— Every function 1n a linear programming model is the sum
of the individual contributions of the respective activities.
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Assumptions of Linear Programming

e Divisibility
— It 1s being assumed that the activities can be run at
fractional value.

— noninteger values for the decision variables are permitted

e Certainty

— The value assigned to each parameter of a linear
programming model 1s assumed to be a kKnown constant.
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Problem Manipulation

e By simple manipulations the LP problem can be
transformed from one form to another equivalent form.

e These manipulations are:
— Inequalities and equations

— Nonnegativity of the variables

— Minimization and maximization problems
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Inequalities and Equations

e An inequality can be easily transformed into an
equation by adding a nonnegative slack variable

e The constraint X7_,a,x, > b,
1s equivalent to 2;=]a{'}'xj - x,,; = b
and X,.;=0

e The constraint 7_,a;x; < b,

is equivalentto 27_a,x; + x, ., = b,

and X,.;=0
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Inequalities and Equations

e Also an equation of the form can be transformed 1nto

the two 1inequalities
e The equation 2X7_,a,x; = b,

1s equivalent to Zf=1a,_-,- x; < b

n

[-
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Nonnegativity of The Variables

e For most practical problems the variables represent
physical quantities and hence must be nonnegative.

e If a variable x; is unrestricted in sign, then it can be
replaced by x’; —x”; where x; > 0 and x”;> 0.

e If x,, ...., x, are some k variables that all unrestricted
variable, then only one additional variable x”1s needed

in the equivalent transformation x" = x’; — x”for j =
1,..., k, where x'j >0 and x“>0.
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Nonnegativity of The Variables

o IijZZj,

automatically nonnegative.

then the new variable X; = X; - lj 1S

e Also if a variable X; 1s restricted such that x < Uj, where
u; < 0, then the substitution x ; = u; - x; produces a
nonnegative variable x;.
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Minimization and Maximization Problems

e Another problem manipulation is to convert a
maximization problem into a minimization problem
and conversely.

e Note that over any region
n n
Maximum 21 ¢;x;= —minimum 21 —C;X;
J= J=

e After the optimization of the new problem 1s
completed, the objective of the old problem 1s -1 times
the optimal objective of the new
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Standard and Canonical Formats

e Standard form

— All restrictions are equalities and all variables are nonnegative.

e Canonical form

— For a minimization problem: all variables are nonnegative and all
the constraints are of the > type.

— For a maximization problem: all the variables are nonnegative
and all the constraints are of the < type.

— The canonical form is useful in exploiting duality relationships.
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Standard and Canonical Formats

MINIMIZATION PROBLEM MAXIMIZATION PROBLEM
[ n
Minimize D, C;X; Maximize D, ¢ X;
Standard n n
Form Subject to >, a;x; = b, i=1...,m|Subjectto a;x; = b, i=1,...,m
i=1 Jj=
x>0 j=1...,n x>0 j=1, , N
n n
Minimize D, C;X; Maximize ), CiX;
Canonical .
Form Subject to Z a;x; > b, i=1,...,m | Subject to 2 a;x; < b, i=1...,m
i=1 J=1
x>0 j=1...,n x>0 j=1...,n
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Linear Programming in Matrix Notation

e Consider the following problem

n
Minimize 21 ¢ X,
J —}

Subjectto D, ax,=b i=12, ..., m
Jj=
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Linear Programming in Matrix Notation

e Denote the row vector (¢, ¢,, . . ., ¢,) by ¢, and
consider the following column vectors x and b, and the
m X n matrix A.

X1 b, ap ap R a,
X, b, A, Ay . a,,
X = b = A = . .
i xn ] bm aml am2 amn i

e Then the above problem can be written as follows.
Minimize  c¢x

Subjectto Ax=Db

x> 0
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Linear Programming in Matrix Notation

e The problem can also be conveniently represented via
the columns of A.

e Denoting A by [a,, a,, . . ., a,] where a; is they j th
column of A, the problem can be formulated as
follows.

n
Minimize 21 CiX,
J —

Subjectto >, a,x,;= b
j=1

xj>0 j=1L2...,n
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Geometric Solution
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Geometric Solution

e Geometric method for solving a linear programming
1s only suitable for very small problems.

e It provides a great deal of insight into the linear
programming problem.

e Consider the following problem.

Minimize c¢x

Subjectto Ax> b

x>0
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Geometric Solution

e The feasible region consists of all vectors X satisfying
Ax>Db and x > 0.

e We want to find a point with minimal ¢x value.

e The points with the same objective z satisty the
equation cx = z, that is, Ef= 1GX; = Z

e Since z 1s to be minimized, then the line (in a two-
dimensional space) 27_ c;x; = z must be moved

parallel to itself in the direction that minimizes the

objective most.

e This direction 1s -¢, and hence the plane 1s moved in
the direction -¢ as much as possible.
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Geometric Solution

e This process is illustrated in this Figure.
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Geometric Solution

e The optimal point x* is reached, the line ¢;x; + ¢,x, =
z*, where z* = ¢, x*, + c,x*,, cannot be moved farther
in the direction —¢ = (-c/, -c2) because this will lead to
only points outside the feasible region.

e We therefore conclude that x* 1s indeed the optimal
solution.

e The optimal point x* is one of the five corner points
that are called extreme points.

e If a linear program has a finite optimal solution, then it
has an optimal corner (or extreme) solution.
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Example

e The equations —x/ — 3x2 = z are called the objective
contours and are represented by dotted lines in the
Figure.

e In particular the contour —x/ — 3x2 = z = 0 passes
through the origin.

e The contours are moved 1n the direction -¢ = (1, 3) as
much as possible until the optimal point (4/3, 14/3) 1s
reached.
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Geometric Solution

e In the example we had a unique optimal solution.

e Other cases may occur depending upon the problem
structure.

e All possible cases that may arise are summarized
below (for a minimization problem):

— Unique Finite Optimal Solution.

— Alternative Finite Optimal Solutions
— Unbounded Optimal Solution

— Empty Feasible Region
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Unique Finite Optimal Solution

e If the optimal finite solution is unique, then it occurs at an
extreme point. (a) Bounded region, (b) Unbounded Region.

e
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Alternative Finite Optimal Solutions

e (a) the feasible region is bounded. The two corner points x,* and x,* are
optimal, and also any point on the line segment joining them.

e (b) the feasible region 1s unbounded but the optimal objective is finite. Any
point on the ray with vertex x* in Figure b is optimal.
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Unbounded Optimal Solution

e The feasible region and the optimal solution are unbounded. For
a minimization problem the plane ¢x = z can be moved in the
direction —c indefinitely while always intersecting with the
feasible region. In this case the optimal objective 1s unbounded

with value -o0.
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Empty Feasible Region

e In this case the system of equations and/or inequalities defining
the feasible region is inconsistent. Consider the following
problem.

—:-x.l

=0

Subjectto —x;+2x,< 2
X,> 4

x;,, Xx,20
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