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Basic Definitions

� Linear programming problem

– A problem of minimizing or maximizing a linear function 

– in the presence of linear constraints of the inequality

and/or the equality type.
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Basic Definitions

� Formulation of LP problem:

– Identify the decision variables.

– Identify the problem constraints and express the 

constraints as a series of linear equations.

– Identify the objective function as a linear equation, and 

state whether the objective is maximization or 
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state whether the objective is maximization or 

minimization.



Basic Definitions

� A linear programming problem
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Basic Definitions

� Objective function

– Here c1x1 + c2x2 + , ..., + cnxn is the objective function to be 

minimized and will be denoted by z. 

� Cost coefficients

– The coefficients c1, c2, . . . , cn are the cost coefficients 
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� Decision variables

– x1, x2, . . . , xn are the decision variables (variables, or 

activity levels) to be determined. 

� Constraints

– The inequality                                denotes the i th

constraint. 



Basic Definitions

� Technological coefficients

– The coefficients aij for i = 1, 2, . . . , m, j = 1, 2, . . . , n are 

called the technological coefficients. 

– These technological coefficients form the constraint matrix

A given below.
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Basic Definitions

� Right-hand-side vector

– The column vector whose i th component is bi, which is 

referred to as the right-hand-side vector, represents the 

minimal requirements to be satisfied. 

� Nonnegativity constraints

– The constraints x , x , . . . , x ≥ 0 are the nonnegativity

Introduction

– The constraints x1, x2, . . . , xn ≥ 0 are the nonnegativity

constraints. 



Basic Definitions

� Feasible point / feasible vector

– A set of  variables x1, . . . , xn satisfying all the constraints is 

called a feasible point or a feasible vector. 

� Feasible region

– The set of all feasible points constitutes the feasible region 

or the feasible space. 
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or the feasible space. 

� The linear programming problem

– Among all feasible vectors, find that which minimizes (or 

maximizes) the objective function. 



Example
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Assumptions of Linear Programming

� Proportionality

– The contribution of each activity to the value of the 

objective function or constraint is proportional to the level 

of the activity

– No savings (or extra costs) are realized by using more of an 

activity 
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activity 

– No setup cost, for starting the activity is realized. 

� Additivity

– Every function in a linear programming model is the sum 

of the individual contributions of the respective activities.



Assumptions of Linear Programming

� Divisibility

– It is being assumed that the activities can be run at 

fractional value.

– noninteger values for the decision variables are permitted 

� Certainty

– The value assigned to each parameter of a linear 
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– The value assigned to each parameter of a linear 

programming model is assumed to be a known constant.



Problem Manipulation

� By simple manipulations the LP problem can be 

transformed from one form to another equivalent form. 

� These manipulations are:

– Inequalities and equations

– Nonnegativity of the variables
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– Minimization and maximization problems



Inequalities and Equations

� An inequality can be easily transformed into an 

equation by adding a nonnegative slack variable

� The constraint 

is equivalent to

and x
n+i
≥ 0
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and x
n+i
≥ 0

� The constraint

is equivalent to                                      

and          x
n+i
≥ 0



Inequalities and Equations

� Also an equation of the form can be transformed into 

the two inequalities

� The equation 

is equivalent to
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Nonnegativity of The Variables

� For most practical problems the variables represent 

physical quantities and hence must be nonnegative. 

� If a variable xj is unrestricted in sign, then it can be 

replaced by x΄j – x˝j where x΄j ≥ 0 and x˝j ≥ 0. 

� If x1, …., xk are some k variables that all unrestricted 

variable, then only one additional variable x˝ is needed 
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1 k

variable, then only one additional variable x˝ is needed 

in the equivalent transformation x΄= x΄j – x˝ for j = 

1,…, k, where x΄j ≥ 0 and x˝ ≥ 0. 



Nonnegativity of The Variables

� If xj ≥ lj,  then the new variable xj = xj - lj is 

automatically nonnegative. 

� Also if a variable xj is restricted such that x ≤ uj, where 

uj ≤ 0, then the substitution x΄j = uj - xj produces a 

nonnegative variable xj. 
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Minimization and Maximization Problems

� Another problem manipulation is to convert a 

maximization problem into a minimization problem 

and conversely. 

� Note that over any region 
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� After the optimization of the new problem is 

completed, the objective of the old problem is -1 times 

the optimal objective of the new 



Standard and Canonical Formats 

� Standard form

– All restrictions are equalities and all variables are nonnegative. 

� Canonical form

– For a minimization problem: all variables are nonnegative and all 

the constraints are of the ≥ type.

– For a maximization problem: all the variables are nonnegative 
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– For a maximization problem: all the variables are nonnegative 

and all the constraints are of the ≤ type. 

– The canonical form is useful in exploiting duality relationships. 



Standard and Canonical Formats 
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Linear Programming in Matrix Notation

� Consider the following problem
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Linear Programming in Matrix Notation

� Denote the row vector (c1, c2, . . . , cn) by c, and 

consider the following column vectors x and b, and the 

m x n matrix A. 
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� Then the above problem can be written as follows. 



Linear Programming in Matrix Notation

� The problem can also be conveniently represented via 

the columns of A. 

� Denoting A by [a1, a2, . . . , an] where aj is they j th

column of A, the problem can be formulated as 

follows. 
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Geometric Solution

� Geometric method for solving a linear programming 

is only suitable for very small problems.

� It provides a great deal of insight into the linear 

programming problem. 

� Consider the following problem. 
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Geometric Solution

� The feasible region consists of all vectors x satisfying 

Ax ≥ b and x ≥ 0. 

� We want to find a point with minimal cx value. 

� The points with the same objective z satisfy the 

equation cx = z, that is, 
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� Since z is to be minimized, then the line (in a two-

dimensional space) must be moved 

parallel to itself in the direction that minimizes the 

objective most.

� This direction is -c, and hence the plane is moved in 

the direction -c as much as possible. 



Geometric Solution

� This process is illustrated in this Figure. 
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Geometric Solution

� The optimal point x* is reached, the line c1x1 + c2x2 = 

z*, where z* = c1x*1 + c2x*2, cannot be moved farther 

in the direction –c = (-c1, -c2) because this will lead to 

only points outside the feasible region. 

� We therefore conclude that x* is indeed the optimal 

solution.
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solution.

� The optimal point x* is one of the five corner points 

that are called extreme points. 

� If a linear program has a finite optimal solution, then it 

has an optimal corner (or extreme) solution. 



Example
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Example

� The equations –x1 – 3x2 = z are called the objective 

contours and are represented by dotted lines in the 

Figure. 

� In particular the contour –x1 – 3x2 = z = 0 passes 

through the origin. 

The contours are moved in the direction -c = (1, 3) as 
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� The contours are moved in the direction -c = (1, 3) as 

much as possible until the optimal point (4/3, 14/3) is 

reached. 



Geometric Solution

� In the example we had a unique optimal solution.

� Other cases may occur depending upon the problem 

structure. 

� All possible cases that may arise are summarized 

below (for a minimization problem):
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– Unique Finite Optimal Solution. 

– Alternative Finite Optimal Solutions

– Unbounded Optimal Solution

– Empty Feasible Region



Unique Finite Optimal Solution

� If the optimal finite solution is unique, then it occurs at an 

extreme point. (a) Bounded region, (b) Unbounded Region. 
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Alternative Finite Optimal Solutions

� (a) the feasible region is bounded. The two corner points x1* and x2* are 

optimal, and also any point on the line segment joining them. 

� (b) the feasible region is unbounded but the optimal objective is finite. Any 

point on the ray with vertex x* in Figure b is optimal. 
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Unbounded Optimal Solution

� The feasible region and the optimal solution are unbounded. For 

a minimization problem the plane cx = z can be moved in the 

direction –c indefinitely while always intersecting with the 

feasible region. In this case the optimal objective is unbounded 

with value -∞.
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Empty Feasible Region

� In this case the system of equations and/or inequalities defining 

the feasible region is inconsistent. Consider the following 

problem.
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