In the name of God

Part 1. The Review of Linear Programming

1.1. Introduction

Spring 2010
Instructor: Dr. Masoud Yaghini

Outline

- The Linear Programming Problem
- Geometric Solution
- References

The Linear Programming Problem

Basic Definitions

- Linear programming problem
- A problem of minimizing or maximizing a linear function
- in the presence of linear constraints of the inequality and/or the equality type.

Basic Definitions

- Formulation of LP problem:
- Identify the decision variables.
- Identify the problem constraints and express the constraints as a series of linear equations.
- Identify the objective function as a linear equation, and state whether the objective is maximization or minimization.

Basic Definitions

- A linear programming problem

Minimize $c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}$
Subject to $a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} \geqslant b_{1}$

$$
\begin{aligned}
& a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} \geqslant b_{2} \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} \geqslant b_{m} \\
& x_{1}, \quad x_{2}, \ldots, \quad x_{n} \geqslant 0
\end{aligned}
$$

Basic Definitions

- Objective function
- Here $c_{1} x_{1}+c_{2} x_{2}+, \ldots,+c_{n} x_{n}$ is the objective function to be minimized and will be denoted by z.
- Cost coefficients
- The coefficients $c_{1}, c_{2}, \ldots, c_{n}$ are the cost coefficients
- Decision variables
$-x_{1}, x_{2}, \ldots, x_{n}$ are the decision variables (variables, or activity levels) to be determined.
- Constraints
- The inequality $\sum_{j=1}^{n} a_{i j} x_{j} \geqslant b_{i}$ denotes the i th constraint.

Basic Definitions

- Technological coefficients
- The coefficients $a_{i j}$ for $i=1,2, \ldots, m, j=1,2, \ldots, n$ are called the technological coefficients.
- These technological coefficients form the constraint matrix A given below.

$$
\mathbf{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

Basic Definitions

- Right-hand-side vector
- The column vector whose i th component is b_{i}, which is referred to as the right-hand-side vector, represents the minimal requirements to be satisfied.
- Nonnegativity constraints
- The constraints $x_{1}, x_{2}, \ldots, x_{n} \geq 0$ are the nonnegativity constraints.

Basic Definitions

- Feasible point / feasible vector
- A set of variables x_{1}, \ldots, x_{n} satisfying all the constraints is called a feasible point or a feasible vector.
- Feasible region
- The set of all feasible points constitutes the feasible region or the feasible space.
- The linear programming problem
- Among all feasible vectors, find that which minimizes (or maximizes) the objective function.

Example

```
Minimize \(2 x_{1}+5 x_{2}\)
Subject to \(x_{1}+x_{2} \geqslant 6\)
\[
-x_{1}-2 x_{2} \geqslant-18
\]
\[
x_{1}, \quad x_{2} \geqslant 0
\]
```

Feasible
region

Assumptions of Linear Programming

- Proportionality
- The contribution of each activity to the value of the objective function or constraint is proportional to the level of the activity
- No savings (or extra costs) are realized by using more of an activity
- No setup cost, for starting the activity is realized.
- Additivity
- Every function in a linear programming model is the sum of the individual contributions of the respective activities.

Assumptions of Linear Programming

- Divisibility
- It is being assumed that the activities can be run at fractional value.
- noninteger values for the decision variables are permitted
- Certainty
- The value assigned to each parameter of a linear programming model is assumed to be a known constant.

Problem Manipulation

- By simple manipulations the LP problem can be transformed from one form to another equivalent form.
- These manipulations are:
- Inequalities and equations
- Nonnegativity of the variables
- Minimization and maximization problems

Inequalities and Equations

- An inequality can be easily transformed into an equation by adding a nonnegative slack variable
- The constraint $\sum_{j=1}^{n} a_{i j} x_{j} \geqslant b_{i}$
is equivalent to $\sum_{j=1}^{n} a_{i j} x_{j}-x_{n+i}=b_{i}$ and $\quad \boldsymbol{x}_{n+i} \geq 0$
- The constraint $\sum_{j=1}^{n} a_{i j} x_{j} \leqslant b_{i}$
is equivalent to $\sum_{j=1}^{n} a_{i j} x_{j}+x_{n+i}=b_{i}$
and

$$
\boldsymbol{x}_{n+i} \geq \mathbf{0}
$$

Inequalities and Equations

- Also an equation of the form can be transformed into the two inequalities
- The equation $\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}$ is equivalent to $\sum_{j=1}^{n} a_{i j} x_{j} \leqslant b_{i}$

$$
\sum_{j=1}^{n} a_{i j} x_{j} \geqslant b_{i} .
$$

Nonnegativity of The Variables

- For most practical problems the variables represent physical quantities and hence must be nonnegative.
- If a variable x_{j} is unrestricted in sign, then it can be replaced by $x_{j}^{\prime}-x_{j}^{\prime \prime}$ where $x_{j}^{\prime} \geq 0$ and $x_{j}^{\prime \prime} \geq 0$.
- If x_{1}, \ldots, x_{k} are some k variables that all unrestricted variable, then only one additional variable $x^{\prime \prime}$ is needed in the equivalent transformation $x^{\prime}=x_{j}^{\prime}-x^{\prime \prime}$ for $j=$ $1, \ldots, k$, where $x_{j}^{\prime} \geq 0$ and $x^{\prime \prime} \geq 0$.

Nonnegativity of The Variables

- If $x_{j} \geq l_{j}$, then the new variable $x_{j}=x_{j}-l_{j}$ is automatically nonnegative.
- Also if a variable x_{j} is restricted such that $x \leq u_{j}$, where $u_{j} \leq 0$, then the substitution $x_{j}^{\prime}=u_{j}-x_{j}$ produces a nonnegative variable x_{j}.

Minimization and Maximization Problems

- Another problem manipulation is to convert a maximization problem into a minimization problem and conversely.
- Note that over any region

$$
\operatorname{Maximum} \sum_{j=1}^{n} c_{j} x_{j}=-\operatorname{minimum} \sum_{j=1}^{n}-c_{j} x_{j}
$$

- After the optimization of the new problem is completed, the objective of the old problem is -1 times the optimal objective of the new

Standard and Canonical Formats

- Standard form
- All restrictions are equalities and all variables are nonnegative.
- Canonical form
- For a minimization problem: all variables are nonnegative and all the constraints are of the \geq type.
- For a maximization problem: all the variables are nonnegative and all the constraints are of the \leq type .
- The canonical form is useful in exploiting duality relationships.

Standard and Canonical Formats

Standard Form	MINIMIZATION PROBLEM			MAXIMIZATION PROBLEM		
	Minimize	$\sum_{j=1}^{n} c_{j} x_{j}$		Maximize	$\sum_{j=1}^{n} c_{j} x_{j}$	
	Subject to	$\begin{aligned} \sum_{j=1}^{n} a_{i j} x_{j} & =b_{i} \\ x_{j} & \geqslant 0 \end{aligned}$	$\begin{aligned} & i=1, \ldots, m \\ & j=1, \ldots, n \end{aligned}$	Subject to	$\begin{aligned} \sum_{j=1}^{n} a_{i j} x_{j} & =b_{i} \\ x_{j} & \geqslant 0 \end{aligned}$	$\begin{aligned} & i=1, \ldots, m \\ & j=1, \ldots, n \end{aligned}$
	Minimize	$\sum_{j=1}^{n} c_{j} x_{j}$		Maximize	$\sum_{j=1}^{n} c_{j} x_{j}$	
Canonical Form	Subject to	$\begin{array}{r} \sum_{j=1}^{n} a_{i j} x_{j} \geqslant b_{i} \\ x_{j} \geqslant 0 \end{array}$	$\begin{aligned} i & =1, \ldots, m \\ j & =1, \ldots, n \end{aligned}$	Subject to	$\begin{aligned} \sum_{j=1}^{n} a_{i j} x_{j} & \leqslant b_{i} \\ x_{j} & \geqslant 0 \end{aligned}$	$\begin{aligned} & i=1, \ldots, m \\ & j=1, \ldots, n \end{aligned}$

Linear Programming in Matrix Notation

- Consider the following problem

Minimize $\quad \sum_{j=1}^{n} c_{j} x_{j}$
Subject to $\quad \sum_{j=1}^{n} a_{i j} x_{j}=b_{i} \quad i=1,2, \ldots, m$

$$
x_{j} \geqslant 0 \quad j=1,2, \ldots, n
$$

Linear Programming in Matrix Notation

- Denote the row vector $\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ by \mathbf{c}, and consider the following column vectors \mathbf{x} and \mathbf{b}, and the $m \times n$ matrix \mathbf{A}.

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right] \quad \mathbf{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

- Then the above problem can be written as follows.

Minimize cx
Subject to $\mathbf{A x}=\mathbf{b}$

$$
\mathbf{x} \geqslant \mathbf{0}
$$

Linear Programming in Matrix Notation

- The problem can also be conveniently represented via the columns of \mathbf{A}.
- Denoting A by $\left[\mathbf{a}_{\mathbf{1}}, \mathbf{a}_{\mathbf{2}}, \ldots, \mathbf{a}_{\mathbf{n}}\right]$ where $\mathbf{a}_{\mathbf{j}}$ is they j th column of \mathbf{A}, the problem can be formulated as follows.

$$
\begin{aligned}
& \text { Minimize } \sum_{j=1}^{n} c_{j} x_{j} \\
& \text { Subject to } \sum_{j=1}^{n} \mathbf{a}_{j} x_{j}=\mathbf{b} \\
& \qquad x_{j} \geqslant 0 \quad j=1,2, \ldots, n
\end{aligned}
$$

Geometric Solution

Geometric Solution

- Geometric method for solving a linear programming is only suitable for very small problems.
- It provides a great deal of insight into the linear programming problem.
- Consider the following problem.

$$
\begin{array}{ll}
\text { Minimize } & \mathbf{c x} \\
& \\
\text { Subject to } & \mathbf{A x} \geqslant \mathbf{b} \\
& \mathbf{x} \geqslant \mathbf{0}
\end{array}
$$

Geometric Solution

- The feasible region consists of all vectors \mathbf{x} satisfying $\mathbf{A x} \geq \mathbf{b}$ and $\mathbf{x} \geq \mathbf{0}$.
- We want to find a point with minimal cx value.
- The points with the same objective z satisfy the equation $\mathbf{c x}=\mathrm{z}$, that is, $\sum_{j=1}^{n} c_{j} x_{j}=z$
- Since z is to be minimized, then the line (in a twodimensional space) $\sum_{j=1}^{n} c_{j} x_{j}=z$ must be moved parallel to itself in the direction that minimizes the objective most.
- This direction is -c, and hence the plane is moved in the direction -c as much as possible.

Geometric Solution

- This process is illustrated in this Figure.

Geometric Solution

- The optimal point \mathbf{x}^{*} is reached, the line $c_{1} x_{1}+c_{2} x_{2}=$ z^{*}, where $z^{*}=c_{1} x^{*}+c_{2} x^{*}$, cannot be moved farther in the direction $-\mathbf{c}=(-c 1,-c 2)$ because this will lead to only points outside the feasible region.
- We therefore conclude that x^{*} is indeed the optimal solution.
- The optimal point $x *$ is one of the five corner points that are called extreme points.
- If a linear program has a finite optimal solution, then it has an optimal corner (or extreme) solution.

Example

Example

- The equations $-x 1-3 x 2=z$ are called the objective contours and are represented by dotted lines in the Figure.
- In particular the contour $-x 1-3 x 2=z=0$ passes through the origin.
- The contours are moved in the direction $\mathbf{- c}=(1,3)$ as much as possible until the optimal point ($4 / 3,14 / 3$) is reached.

Geometric Solution

- In the example we had a unique optimal solution.
- Other cases may occur depending upon the problem structure.
- All possible cases that may arise are summarized below (for a minimization problem):
- Unique Finite Optimal Solution.
- Alternative Finite Optimal Solutions
- Unbounded Optimal Solution
- Empty Feasible Region

Unique Finite Optimal Solution

- If the optimal finite solution is unique, then it occurs at an extreme point. (a) Bounded region, (b) Unbounded Region.

Alternative Finite Optimal Solutions

- (a) the feasible region is bounded. The two corner points $\mathrm{x}_{1} *$ and $\mathrm{x}_{2} *$ are optimal, and also any point on the line segment joining them.
- (b) the feasible region is unbounded but the optimal objective is finite. Any point on the ray with vertex $x *$ in Figure b is optimal.

(a)

Unbounded Optimal Solution

- The feasible region and the optimal solution are unbounded. For a minimization problem the plane $\mathbf{c x}=\mathrm{z}$ can be moved in the direction -c indefinitely while always intersecting with the feasible region. In this case the optimal objective is unbounded with value $-\infty$.

Empty Feasible Region

- In this case the system of equations and/or inequalities defining the feasible region is inconsistent. Consider the following problem.

References

References

- M.S. Bazaraa, J.J. Jarvis, H.D. Sherali, Linear Programming and Network Flows, Wiley, 1990. (Chapter 1)

The End

