In the name of God

# Part 1. The Review of Linear Programming

# **1.2. Simplex Method**

#### Spring 2010

Instructor: Dr. Masoud Yaghini

## Outline

#### Introduction

- Basic Feasible Solutions
- Key to the Simplex Method
- Algebra of the Simplex Method
- The Simplex Algorithm
- The Simplex Method In Tableau Format
- References

## Introduction

### **The Simplex Method**

- The **simplex method** is an **algebraic** procedure for solving **linear programming problems**.
- Its underlying concepts are **geometric**.
- Developed by George Dantzig in 1947.
- It has proved to be a remarkably **efficient method** that is used routinely to solve huge problems on today's computers.

- Consider the system Ax = b and x ≥ 0, where A is an m x n matrix and b is an m vector.
- Suppose that rank  $(\mathbf{A}, \mathbf{b}) = \operatorname{rank} (\mathbf{A}) = \mathbf{m}$ .
- Let  $\mathbf{A} = [\mathbf{B}, \mathbf{N}]$  where  $\mathbf{B}$  is an m x m invertible matrix and  $\mathbf{N}$  is an m x (n - m) matrix.
- The solution  $\mathbf{x} = \begin{bmatrix} \mathbf{x}_B \\ \mathbf{x}_N \end{bmatrix}$  to the equations  $\mathbf{A}\mathbf{x} = \mathbf{b}$ , where

$$\mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b}$$

$$\mathbf{x}_N = \mathbf{0}$$

- This solution is a basic solution
- If  $\mathbf{x}_{\mathbf{B}} \ge 0$ , then **x** is called a **basic feasible solution**
- **B** is the **basic matrix** (or simply the **basis**)
- N is the nonbasic matrix
- **x**<sub>B</sub> are **basic variables**
- x<sub>N</sub> are **nonbasic variables**
- If x<sub>B</sub> > 0, then x is called a nondegenerate basic feasible solution
- If at least one component of **x**<sub>B</sub> is zero, then **x** is called a **degenerate basic feasible solution**

• Consider the **polyhedral set** defined by the following inequalities



• By introducing the slack variables x<sub>3</sub> and x<sub>4</sub>, the problem is put in the following standard format:

$$x_{1} + x_{2} + x_{3} = 6$$

$$x_{2} + x_{4} = 3$$

$$x_{1}, x_{2}, x_{3}, x_{4} \ge 0$$

• Note that the constraint matrix

$$\mathbf{A} = [\mathbf{a}_1, \, \mathbf{a}_2, \, \mathbf{a}_3, \, \mathbf{a}_4] = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

• Possible **Basic solutions** are:

1. 
$$\mathbf{B} = [\mathbf{a}_{1}, \mathbf{a}_{2}] = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
  
 $\mathbf{x}_{B} = \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \mathbf{B}^{-1}\mathbf{b} = \begin{bmatrix} 1 & -1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 6 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}, \quad \mathbf{x}_{N} = \begin{bmatrix} x_{3} \\ x_{4} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$   
2.  $\mathbf{B} = [\mathbf{a}_{1}, \mathbf{a}_{4}] = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$   
 $\mathbf{x}_{B} = \begin{bmatrix} x_{1} \\ x_{4} \end{bmatrix} = \mathbf{B}^{-1}\mathbf{b} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 3 \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \end{bmatrix}, \quad \mathbf{x}_{N} = \begin{bmatrix} x_{2} \\ x_{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$   
3.  $\mathbf{B} = [\mathbf{a}_{2}, \mathbf{a}_{3}] = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$   
 $\mathbf{x}_{B} = \begin{bmatrix} x_{2} \\ x_{3} \end{bmatrix} = \mathbf{B}^{-1}\mathbf{b} = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 6 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}, \quad \mathbf{x}_{N} = \begin{bmatrix} x_{1} \\ x_{4} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$   
4.  $\mathbf{B} = [\mathbf{a}_{2}, \mathbf{a}_{4}] = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$   
 $\mathbf{x}_{B} = \begin{bmatrix} x_{2} \\ x_{4} \end{bmatrix} = \mathbf{B}^{-1}\mathbf{b} = \begin{bmatrix} -1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 3 \end{bmatrix} = \begin{bmatrix} -6 \\ -3 \end{bmatrix}, \quad \mathbf{x}_{N} = \begin{bmatrix} x_{1} \\ x_{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$   
5.  $\mathbf{B} = [\mathbf{a}_{3}, \mathbf{a}_{4}] = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$   
 $\mathbf{x}_{B} = \begin{bmatrix} x_{3} \\ x_{4} \end{bmatrix} = \mathbf{B}^{-1}\mathbf{b} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ 

• We have **four basic feasible solutions:** 

$$\mathbf{x}_1 = \begin{bmatrix} 3\\3\\0\\0 \end{bmatrix}, \qquad \mathbf{x}_2 = \begin{bmatrix} 6\\0\\0\\3 \end{bmatrix}, \qquad \mathbf{x}_3 = \begin{bmatrix} 0\\3\\3\\0 \end{bmatrix}, \qquad \mathbf{x}_4 = \begin{bmatrix} 0\\0\\6\\3 \end{bmatrix}$$

• These **basic feasible solutions**, in the (x<sub>1</sub>, x<sub>2</sub>) space—give rise to the following four points:

$$\begin{bmatrix} 3\\3 \end{bmatrix}, \begin{bmatrix} 6\\0 \end{bmatrix}, \begin{bmatrix} 0\\3 \end{bmatrix}, \begin{bmatrix} 0\\0 \end{bmatrix}$$

• These points are precisely the **extreme points** of the feasible region.

- In this example, the possible number of basic feasible solutions is bounded by the number of ways of extracting **two columns out of four columns** to form the basis.
- Therefore the number of basic feasible solutions is less or equal to:
   (4) 4!

$$\binom{4}{2} = \frac{4!}{2!2!} = 6.$$

• Out of these six possibilities, one point violates the nonnegativity of **B**<sup>-1</sup>**b**. Furthermore,  $a_1$  and  $a_3$ , could not have been used to form a basis since  $a_1 = a_3 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$  are **linearly dependent**, and hence the matrix  $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$  qualify as a basis.

• In general, the number of basic feasible solutions is less than or equal to:

$$\binom{n}{m} = \frac{n!}{m! (n-m)!}$$

• Consider the following system of inequalities:



• The third restriction is **redundant**.

• After adding the slack variables, we get

• Note that  

$$x_{1} + x_{2} + x_{3} = 6$$

$$x_{2} + x_{4} = 3$$

$$x_{1} + 2x_{2} + x_{5} = 9$$

$$x_{1}, \quad x_{2}, \quad x_{3}, \quad x_{4}, \quad x_{5} \ge 0$$

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_1, \, \mathbf{a}_2, \, \mathbf{a}_3, \, \mathbf{a}_4, \, \mathbf{a}_5 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 2 & 0 & 0 & 1 \end{bmatrix}$$

Let us consider the basic feasible solution with B =
 [a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub>]

$$\mathbf{x}_{B} = \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 2 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 6 \\ 3 \\ 9 \end{bmatrix} = \begin{bmatrix} 0 & -2 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} 6 \\ 3 \\ 9 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 0 \end{bmatrix}$$
$$\mathbf{x}_{N} = \begin{bmatrix} x_{4} \\ x_{5} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

• Note that this basic feasible solution is degenerate since the basic variable  $x_3 = 0$ .

Now consider the basic feasible solution with B = [a<sub>1</sub>, a<sub>2</sub>, a<sub>4</sub>]

$$\mathbf{x}_{B} = \begin{bmatrix} x_{1} \\ x_{2} \\ x_{4} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 2 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 6 \\ 3 \\ 9 \end{bmatrix} = \begin{bmatrix} 2 & 0 & -1 \\ -1 & 0 & 1 \\ 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} 6 \\ 3 \\ 9 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 0 \end{bmatrix}$$
$$\mathbf{x}_{N} = \begin{bmatrix} x_{3} \\ x_{5} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

• This basic feasible solution gives rise to the same point

• It can be also checked that the basic feasible solution with basis  $\mathbf{B} = [\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_5]$  is given by

$$\mathbf{x}_{B} = \begin{bmatrix} x_{1} \\ x_{2} \\ x_{5} \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 0 \end{bmatrix} \qquad \mathbf{x}_{N} = \begin{bmatrix} x_{3} \\ x_{4} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

- All three of the foregoing basic feasible solutions with different bases are represented by the single extreme point (x1, x2, x3, x4, x5) = (3, 3, 0, 0, 0).
- Each of the three basic feasible solutions is degenerate since each contains a basic variable at level zero.

- Since the number of basic feasible solutions is bounded by  $\binom{n}{m}$ ,
- One may think of simply listing all basic feasible solutions, and picking the one with the minimal objective value.
- This is not satisfactory, for a number of reasons

#### • The reasons:

- Firstly, the number of basic feasible solutions is large, even for moderate values of *m* and *n*.
- Secondly, this approach does not tell us if the problem has an unbounded solution that may occur if the feasible region is unbounded.
- Lastly, if the feasible region is empty, we shall discover that the feasible region is empty, only after all possible ways of extracting *m* columns out of *n* columns of the matrix **A** fail to produce a basic feasible solution, on the grounds that **B** does not have an inverse, or else  $\mathbf{B}^{-1}\mathbf{b} \ge \mathbf{0}$

• The key to the simplex method lies in recognizing the optimality of a given basic feasible solution (extreme point solution) based on local considerations without having to (globally) enumerate all basic feasible solutions.

• Consider the following linear programming problem.

Minimize cx

Subject to Ax = b

#### $x \! \geqslant \! 0$

- where  $\mathbf{A}$  is an  $m \ge n$  matrix.
- Suppose that we have a basic feasible solution  $\begin{pmatrix} \mathbf{B}^{-1}\mathbf{b} \\ \mathbf{0} \end{pmatrix}$  whose objective value  $z_0$  is given by

$$z_0 = \mathbf{c} \begin{pmatrix} \mathbf{B}^{-1} \mathbf{b} \\ \mathbf{0} \end{pmatrix} = (\mathbf{c}_B, \mathbf{c}_N) \begin{pmatrix} \mathbf{B}^{-1} \mathbf{b} \\ \mathbf{0} \end{pmatrix} = \mathbf{c}_B \mathbf{B}^{-1} \mathbf{b}$$

- Let  $\mathbf{x}_{\mathbf{B}}$  and  $\mathbf{x}_{\mathbf{N}}$  denote the set of **basic** and **nonbasic** variables for the given basis.
- Then feasibility requires that  $\mathbf{x}_{\mathbf{B}} \ge \mathbf{0}$ ,  $\mathbf{X}_{\mathbf{N}} \ge \mathbf{0}$ , and that

 $\mathbf{b} = \mathbf{A}\mathbf{x} = \mathbf{B}\mathbf{x}_{\mathbf{B}} + \mathbf{N}\mathbf{x}_{\mathbf{N}}$ 

• Multiplying the last equation by  $B^{-1}$  and rearranging the terms:

$$\mathbf{x}_{B} = \mathbf{B}^{-1}\mathbf{b} - \mathbf{B}^{-1}\mathbf{N}\mathbf{x}_{N}$$
$$= \mathbf{B}^{-1}\mathbf{b} - \sum_{j \in R} \mathbf{B}^{-1}\mathbf{a}_{j}x_{j}$$
$$= \overline{\mathbf{b}} - \sum_{j \in R} (\mathbf{y}_{j})\mathbf{x}_{j}$$

- where **R** is the current set of the indices of the **nonbasic variables**.

letting z denote the objective function at x, we get z = cx = c<sub>B</sub>x<sub>B</sub> + c<sub>N</sub>x<sub>N</sub> = c<sub>B</sub>(B<sup>-1</sup>b - ∑<sub>j∈R</sub>B<sup>-1</sup>a<sub>j</sub>x<sub>j</sub>) + ∑<sub>j∈R</sub>c<sub>j</sub>x<sub>j</sub> = z<sub>0</sub> - ∑<sub>j∈R</sub>(z<sub>j</sub> - c<sub>j</sub>)x<sub>j</sub>
where z<sub>j</sub> = c<sub>B</sub>B<sup>-1</sup> a<sub>j</sub> for each nonbasic variable. • The LP problem may be rewritten as:

Minimize 
$$z = z_0 - \sum_{j \in R} (z_j - c_j) x_j$$
  
Subject to  $\sum_{j \in R} (y_j) x_j + x_B = \overline{\mathbf{b}}$   
 $x_j \ge 0, j \in R$ , and  $\mathbf{x}_B \ge 0$ 

- Since we are to minimize z, whenever  $z_j c_j > 0$ , it would be to our advantage to increase  $x_i$  (from its current level of zero).
- If  $(z_j c_j) \le 0$  for all  $j \in R$ , then
  - the current feasible solution is optimal.
  - $z \ge z_0$  for any feasible solution, and for the current (basic) feasible solution
  - $-z = z_0$  since  $x_j = 0$  for all  $j \in R$

- If  $(z_j c_j) \le 0$  for all  $j \in R$ , then  $x_j = 0, j \in R$  and  $x_B = \overline{\mathbf{b}}$  is optimal for LP.
- If  $z_k c_k > 0$ , and it is the most positive of all  $z_j c_j$ , it would be to our benefit to increase  $x_k$  as much as possible.
- As  $x_k$  is increased, the current basic variables must be modified according to:  $\mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b} - \mathbf{B}^{-1}\mathbf{a}_k x_k = \mathbf{\bar{b}} - \mathbf{y}_k x_k$

$$\begin{array}{c} x_{B_{1}} \\ x_{B_{2}} \\ \vdots \\ x_{B_{r}} \\ \vdots \\ x_{B_{m}} \end{array} = \begin{bmatrix} \overline{b_{1}} \\ \overline{b_{2}} \\ \vdots \\ \overline{b_{2}} \\ \vdots \\ \overline{b_{2}} \\ \vdots \\ \overline{b_{2}} \\ \vdots \\ \overline{b_{2}} \\ - \begin{bmatrix} y_{1k} \\ y_{2k} \\ \vdots \\ y_{2k} \\ \vdots \\ y_{rk} \\ \vdots \\ y_{rk} \\ \vdots \\ y_{mk} \end{bmatrix} x_{k}$$

- If  $y_{ik} < 0$ , then  $x_{Bi}$  increases as  $x_k$  increases and so  $x_{Bi}$  continues to be nonnegative.
- If  $y_{ik} = 0$ , then  $x_{Bi}$  is not changed as  $x_k$  increases and so  $x_{Bi}$  continues to be nonnegative.
- If  $y_{ik} > 0$ , then  $x_{Bi}$  will decrease as  $x_k$  increases.
  - In order to satisfy nonnegativity,  $x_k$  is increased until the first point at which a basic variable  $x_{Br}$  drops to zero.
- It is then clear that the first basic variable dropping to zero corresponds to the minimum of  $\overline{b}_i / y_{ik}$  for  $y_{ik} > 0$ .

• More precisely:

$$x_{k} = \frac{\overline{b_{r}}}{y_{rk}} = \operatorname{Minimum}_{1 \le i \le m} \left\{ \frac{\overline{b_{i}}}{y_{ik}} : y_{ik} > 0 \right\}$$

- In the absence of degeneracy  $\overline{b}_r > 0$ , and  $x_k = \overline{b}_r / y_{rk} > 0$ .
- As  $x_k$  increases from level 0 to  $\overline{b_r}/y_{rk}$ , a new feasible solution is obtained.

• Substituting  $x_k = b_r / y_{rk}$  in this Equation  $\mathbf{x}_{B} = \mathbf{B}^{-1}\mathbf{b} - \mathbf{B}^{-1}\mathbf{a}_{k}x_{k} = \bar{\mathbf{b}} - \mathbf{y}_{k}x_{k}$ • gives:  $x_{B_i} = \bar{b_i} - \frac{y_{ik}}{y_{rk}} \bar{b_r}$  i = 1, 2, ..., m $x_k = \frac{b_r}{y_{rk}}$ all other  $x_i$ 's are zero

• The corresponding columns are

 $a_{B1},\,a_{B2},\,...,\,a_{r\text{-}1},\,a_k,\,a_{r\text{+}1},\,...,\,a_m.$ 

• If  $\mathbf{a}_{B1}$ ,  $\mathbf{a}_{B2}$ , ...,  $\mathbf{a}_{m}$  are linearly independent, and if  $\mathbf{a}_{k}$  replaces  $\mathbf{a}_{Br}$ , then the new columns are linearly independent if and only if  $y_{rk} \neq 0$ .

Minimize 
$$x_1 + x_2$$
  
Subject to  $x_1 + 2x_2 \le 4$   
 $x_2 \le 1$   
 $x_1, x_2 \ge 0$ 

• Introduce the slack variables  $x_3$  and  $x_4$  to put the problem in a standard form. This leads to the following constraint matrix **A**:

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_1, \, \mathbf{a}_2, \, \mathbf{a}_3, \, \mathbf{a}_4 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

- Consider the basic feasible solution corresponding to  $\mathbf{B} = [\mathbf{a}_1, \mathbf{a}_2]$ . In other words,  $x_1$  and  $x_2$  are the basic variables while  $x_3$  and  $x_4$  are the nonbasic variables.
- First compute

$$\mathbf{B}^{-1} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}, \qquad \mathbf{c}_B \mathbf{B}^{-1} = (1, 1) \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} = (1, -1).$$

• Hence

$$\mathbf{y}_3 = \mathbf{B}^{-1} \mathbf{a}_3 = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$
$$\mathbf{y}_4 = \mathbf{B}^{-1} \mathbf{a}_4 = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{bmatrix} -2 \\ 1 \end{bmatrix},$$
$$\overline{\mathbf{b}} = \mathbf{B}^{-1} \mathbf{b} = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} 4 \\ 1 \end{pmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}.$$

• Also 
$$z_0 = \mathbf{c}_B \mathbf{B}^{-1} \mathbf{b} = (1, -1) \begin{pmatrix} 4 \\ 1 \end{pmatrix} = 3,$$

$$z_3 - c_3 = \mathbf{c}_B \mathbf{B}^{-1} \mathbf{a}_3 - c_3 = (1, -1) \begin{bmatrix} 1 \\ 0 \end{bmatrix} - 0 = 1,$$

$$z_4 - c_4 = \mathbf{c}_B \mathbf{B}^{-1} \mathbf{a}_4 - c_4 = (1, -1) \begin{bmatrix} 0 \\ 1 \end{bmatrix} - 0 = -1.$$

• The required representation of the problem is

Minimize 
$$3 - x_3 + x_4$$
  
subject to  $x_3 - 2x_4 + x_1 = 2$   
 $x_4 + x_2 = 1$   
 $x_1, x_2, x_3, x_4 \ge 0.$ 

- Since  $z_3 c_3 > 0$ , then the objective improves by increasing  $x_3$
- The modified solution is given by

$$\mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b} - \mathbf{B}^{-1}\mathbf{a}_3 x_3$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 \\ 0 \end{bmatrix} x_3$$

• The maximum value of  $x_3$  is 2 (any larger value of  $x_3$  will force  $x_1$  to be negative). Therefore the new basic feasible solution is

$$(x_1, x_2, x_3, x_4) = (0, 1, 2, 0)$$

• Here  $x_3$  enters the basis and  $x_1$  leaves the basis. Note that the new point has an objective value equal to 1, which is an improvement over the previous objective value of 3. The improvement is precisely  $(z_3 - c_3) x_3 = 2$ .

• The feasible region of the problem in both the original  $(x_1, x_2)$  space as well as in the current  $(x_3, x_4)$  space.



#### **Interpretation of Entering the Basis**

• Recall that  $z = \mathbf{c}_B \mathbf{b} - (z_k - c_k) x_k$ - where  $z_k = \mathbf{c}_B \mathbf{B}^{-1} \mathbf{a}_k = \mathbf{c}_B \mathbf{y}_k = \sum_{i=1}^m c_{B_i} y_{ik}$ 

- where  $c_{Bi}$  is the cost of the *i* th basic variable.

- If *x<sub>k</sub>* is raised from zero level, while the other nonbasic variables **are kept at zero** level,
  - then the basic variables  $x_{B1}, x_{B2}, \ldots, x_{Bm}$  must be modified according to

$$\mathbf{x}_{B} = \mathbf{B}^{-1}\mathbf{b} - \mathbf{B}^{-1}\mathbf{a}_{k}x_{k} = \bar{\mathbf{b}} - \mathbf{y}_{k}x_{k}$$

#### **Interpretation of Entering the Basis**

- if  $x_k$  is increased by **1 unit**:
  - if  $y_{ik} > 0$ , the *i* th basic variable will be decreased by  $y_{ik}$
  - if  $y_{ik} < 0$ , the *i* th basic variable will be increased by  $y_{ik}$
  - if  $y_{ik} = 0$ , the *i* th basic variable will not be changed
- $z_k$  which is  $\sum_{i=1}^{m} c_{B_i} y_{ik}$ , is the cost saving that results from the modification of the basic variables, as a result of increasing  $x_k$  by 1 unit
- $c_k$  is the cost of increasing  $x_k$  itself by 1 unit
- $z_k c_k$  is the saving minus the cost of increasing  $x_k$  by 1 unit

#### **Interpretation of Entering the Basis**

- if  $z_k c_k > 0$ ,
  - it will be to our advantage to increase  $x_k$
  - For each unit of x<sub>k</sub>, the cost will be reduced by an amount z<sub>k</sub>
    c<sub>k</sub> and hence it will be to our advantage to increase x<sub>k</sub> as much as possible.
- if  $z_k c_k < 0$ ,
  - then by increasing  $x_k$ , the net saving is negative, and this action will result in a larger cost.
  - So this action is prohibited.
- If  $z_k c_k = 0$ ,
  - then increasing  $x_k$  will lead to a different solution, with the same cost.

#### **Interpretation of Leaving the Basis**

- Suppose that we decided to increase a nonbasic variable  $x_k$  with a positive  $z_k c_k$
- the larger the value of  $x_k$ , the smaller is the objective z.
- As  $x_k$  is increased, the basic variables are modified according to

$$\mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b} - \mathbf{B}^{-1}\mathbf{a}_k x_k = \bar{\mathbf{b}} - \mathbf{y}_k x_k$$

• If the vector  $y_k$  has any positive component(s), then the corresponding basic variable(s) is decreased as  $x_k$  is increased.

#### **Interpretation of Leaving the Basis**

- Therefore the nonbasic variable x<sub>k</sub> cannot be indefinitely increased, because otherwise the nonnegativity of the basic variables will be violated.
- The first basic variable  $x_{Br}$  that drops to zero is called the **blocking variable** because it blocked further increase of  $x_k$ .
- Thus  $x_k$  enters the basis and  $x_{Br}$  leaves the basis.

# **Termination: Optimality and Unboundedness**

### **Termination Optimality and Unboundedness**

- Different cases for terminations of simplex methods:
  - Termination with an Optimal Solution
  - Unique and Alternative Optimal Solutions
  - Unboundedness

### **Termination with an Optimal Solution**

- Suppose that x\* is a basic feasible solution with basis
   B
- Let z\* denote the objective of x\*
- Suppose  $z_j c_j \le 0$ , for all nonbasic variables
  - In this case no nonbasic variable is eligible for entering the basis.
- Fro the following equation:

$$z = z_0 - \sum_{j \in R} (z_j - c_j) x_j$$

• **x**\* is an unique optimal basic feasible solution.

### **Unique and Alternative Optimal Solutions**

- Consider the case where  $z_j c_j \le 0$  for all nonbasic components,
- Bu  $z_k c_k = 0$  for at least one nonbasic variable  $x_k$ .
- If x<sub>k</sub> is increased, we get (in the absence of degeneracy) points that are different from x\* but have the same objective value.
- If *x<sub>k</sub>* is increased until it is blocked by a basic variable, we get an alternative optimal basic feasible solution.
- The process of increasing *x<sub>k</sub>* from level zero until it is blocked generates an **infinite number** of alternative optimal solutions.

### Unboundedness

- Suppose that we have a basic feasible solution of the system Ax = b, x > 0, with objective value  $z_0$ .
- Let us consider the case when we find a nonbasic variable  $x_k$  with  $z_k c_k > 0$  and  $\mathbf{y_k} \le 0$ .
- This variable is eligible to enter the basis since increasing it will improve the objective function.
- It is to our benefit to increase x<sub>k</sub> indefinitely, which will make z go to -∞.
- Based on the following equation:

$$\mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b} - \mathbf{B}^{-1}\mathbf{a}_k x_k = \mathbf{\bar{b}} - \mathbf{y}_k x_k$$

# **The Simplex Algorithm**

#### The Simplex Algorithm

- Given a basic feasible solution, we can either improve it if  $z_k - c_k > 0$  for some nonbasic variable  $x_k$ , or stop with an optimal point if  $z_j - c_j \le 0$  for all nonbasic variables.
- If  $z_k c_k > 0$ , and the vector  $\mathbf{y}_k$  contains at least one positive component, then the increase in  $x_k$  will be blocked by one of the current basic variables, which drops to zero and leaves the basis.
- On the other hand, if z<sub>k</sub> c<sub>k</sub> > 0 and y<sub>k</sub> ≤ 0, then x<sub>k</sub> can be increased indefinitely, and the optimal solution is unbounded and has value -∞.

#### The Simplex Algorithm

• We now give a summary of the simplex method for solving the following linear programming problem. Minimize cx

Subject to Ax = b

#### $x \ge 0$

- where  $\mathbf{A}$  is an  $m \times n$  matrix with rank m.

### Initialization Step of Simplex Algorithm

- Choose a starting basic feasible solution with basis **B**.

#### **MAIN STEP:**

Step 1:

- Solve the system  $\mathbf{B}\mathbf{x}_{\mathbf{B}} = \mathbf{b}$
- Let  $\mathbf{x}_{\mathbf{B}} = \mathbf{b}$ ,  $\mathbf{x}_{\mathbf{N}} = \mathbf{0}$ , and  $\mathbf{z} = \mathbf{c}_{\mathbf{B}}\mathbf{x}_{\mathbf{B}}$ .

#### **Step 2:**

- Solve the system  $\mathbf{wB} = \mathbf{c}_{\mathbf{B}}$ , with unique solution  $\mathbf{w} = \mathbf{c}_{\mathbf{B}}\mathbf{B}^{-1}$ .
- The vector of w is **simplex multipliers**
- Calculate  $z_j c_j = \mathbf{wa_j} c_j$  for all nonbasic variables.
- This is known as the **pricing operation**.

- Let 
$$z_k - c_k = \underset{j \in R}{\operatorname{Maximum}} z_j - c_j$$

- where R is the current set of indices associated with the nonbasic variables.
- If  $z_k c_k \le 0$ , then stop with the current basic feasible solution as an **optimal solution**.
- Otherwise go to step 3 with  $x_k$  as the entering variable.

Step 3:

- Solve the system  $\mathbf{B}\mathbf{y}_k = \mathbf{a}_k$ , with unique solution  $\mathbf{y}_k = \mathbf{B}^{-1}\mathbf{a}_k$ .
- If  $y_k \leq 0$ , then stop with the conclusion that the optimal solution is **unbounded**
- If NOT  $y_k \le 0$ , go to step 4.

#### Step 4:

- Let  $x_k$  enters the basis and the blocking variable  $x_{Br}$  leaves the basis,
- where the index r is determined by the following minimum ratio test:  $\frac{\overline{b_r}}{y_{rk}} = \operatorname{Minimum}_{1 \le i \le m} \left\{ \frac{\overline{b_i}}{y_{ik}} : y_{ik} > 0 \right\}$
- Update the basis **B** where  $\mathbf{a}_k$  replaces  $\mathbf{a}_{Br}$ , the index set **R** and go to step 1.

#### **Modification for a Maximization Problem**

- A maximization problem can be transformed into a minimization problem by multiplying the objective coefficients by 1.
- A maximization problem can also be handled directly as follows.
- Let  $z_k c_k$  instead be the **minimum**  $z_j c_j$  for j nonbasic; the stopping criterion is that  $z_k c_k \ge 0$ . Otherwise, the steps are as above.

- Suppose that we have a starting basic feasible solution **x** with basis **B**.
- The linear programming problem can be represented as follows:

Minimize z Subject to  $z - \mathbf{c}_B \mathbf{x}_B - \mathbf{c}_N \mathbf{x}_N = 0$  (1)  $\mathbf{B} \mathbf{x}_B + \mathbf{N} \mathbf{x}_N = \mathbf{b}$  (2)  $\mathbf{x}_B, \quad \mathbf{x}_N \ge \mathbf{0}$  • From Equation (2) we have:

$$\mathbf{x}_{\mathcal{B}} + \mathbf{B}^{-1} \mathbf{N} \mathbf{x}_{N} = \mathbf{B}^{-1} \mathbf{b}$$
 (3)

• Multiplying (3) by  $\mathbf{c}_{\mathbf{B}}$  and adding to Equation (1), we get

$$z + \mathbf{0}\mathbf{x}_B + (\mathbf{c}_B \mathbf{B}^{-1} \mathbf{N} - \mathbf{c}_N)\mathbf{x}_N = \mathbf{c}_B \mathbf{B}^{-1} \mathbf{b} \quad (4)$$

- Currently  $\mathbf{x}_{N} = \mathbf{0}$ , and from Equations (3) and (4) we get  $\mathbf{x}_{B} = \mathbf{B}^{-1}\mathbf{b}$  and  $\mathbf{z} = \mathbf{c}_{B}\mathbf{B}^{-1}\mathbf{b}$ .
- Also, from (3) and (4) we can conveniently represent the current basic feasible solution in the following tableau.

$$z \quad \mathbf{X}_{B} \quad \mathbf{X}_{N} \quad \text{RHS}$$

$$z \quad \boxed{1 \quad 0} \quad \mathbf{c}_{B}\mathbf{B}^{-1}\mathbf{N} - \mathbf{c}_{N} \quad \mathbf{c}_{B}\mathbf{B}^{-1}\mathbf{b} \quad \text{Row 0}$$

$$\mathbf{x}_{B} \quad \boxed{0 \quad \mathbf{I}} \quad \mathbf{B}^{-1}\mathbf{N} \quad \mathbf{B}^{-1}\mathbf{b} \quad \text{Rows 1 through } m$$

- Here we think of z as a (basic) variable to be minimized.
- The objective row will be referred to as row 0 and the remaining rows are rows 1 through *m*.
- The **right-hand-side column (RHS)** will denote the values of the basic variables (including the objective function).
- The basic variables are identified on the far left column.
- Actually the cost row gives us c<sub>B</sub>B<sup>-1</sup>N c<sub>N</sub>, which consists of the z<sub>j</sub> - c<sub>j</sub> for the nonbasic variables.
- So row zero will tell us if we are at the optimal solution (if each  $z_j c_j \le 0$ ), and which nonbasic variable to increase otherwise.

### Pivoting

- If  $x_k$  enters the basis and  $x_{Br}$  leaves the basis, then pivoting on  $y_{rk}$  can be stated as follows.
- 1. Divide row r by  $y_{rk}$ .
- 2. For i = 1, 2, ..., m and i # r, update the *i* th row by adding to it  $-y_{ik}$  times the new *r* th row.
- 3. Update row zero by adding to it  $c_k z_k$  times the new *r* th row. The two tableaux represent the situation immediately before and after pivoting.

#### **Before and after pivoting**



- Let us examine the implications of the pivoting operation.
- 1. The variable  $x_k$  entered the basis and  $x_{Br}$  left the basis. This is illustrated on the left-hand side of the tableau by replacing  $x_{Br}$  with  $x_k$ . For the purpose of the following iteration, the new  $x_{Br}$  is now  $x_k$ .
- 2. The right-hand side of the tableau gives the current values of the basic variables. The nonbasic variables are kept zero.
- 3. Pivoting results in a new tableau that gives the new  $B^{-1}N$  under the nonbasic variables, an updated set of  $z_j c_j$  for the new nonbasic variables, and the values of the new basic variables and objective function.

• Example Minimize  $x_1 + x_2 - 4x_3$ Subject to  $x_1 + x_2 + 2x_3 \le 9$  $x_1 + x_2 - x_3 \le 2$  $-x_1 + x_2 + x_3 \le 4$  $x_1, x_2, x_3 \ge 0$ 

• Introduce the nonnegative slack variables  $x_4$ ,  $x_5$ , and  $x_6$ .

Minimize 
$$x_1 + x_2 - 4x_3 + 0x_4 + 0x_5 + 0x_6$$
  
Subject to  $x_1 + x_2 + 2x_3 + x_4 = 9$   
 $x_1 + x_2 - x_3 + x_5 = 2$   
 $-x_1 + x_2 + x_3 + x_6 = 4$   
 $x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$ 

• Since  $\mathbf{b} \ge \mathbf{0}$ , then we can choose our initial basis as  $\mathbf{B} = [\mathbf{a}_4, \mathbf{a}_5, \mathbf{a}_6] = \mathbf{I}_3$ , and we indeed have  $\mathbf{B}^{-1}\mathbf{b} \ge 0$ . This gives the following initial tableau.

Iteration 1



Iteration 2

|                       | Z | $x_1$ | $x_2$ | <i>x</i> <sub>3</sub> | $x_4$ | $x_5$ | $x_6$ | RHS  |
|-----------------------|---|-------|-------|-----------------------|-------|-------|-------|------|
| Ζ                     | 1 | 3     | - 5   | 0                     | 0     | 0     | - 4   | - 16 |
| <b>x</b> <sub>4</sub> | 0 | 3     | - 1   | 0                     | 1     | 0     | - 2   | 1    |
| $x_5$                 | 0 | 0     | 2     | 0                     | 0     | 1     | 1     | 6    |
| $x_3$                 | 0 | 1     | 1     | 1                     | 0     | 0     | 1     | 4    |

Iteration 3

|                       | Z | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | <i>x</i> <sub>3</sub> | <i>x</i> <sub>4</sub> | $x_5$ | $x_6$          | RHS            |
|-----------------------|---|-----------------------|-----------------------|-----------------------|-----------------------|-------|----------------|----------------|
| Z                     | 1 | 0                     | - 4                   | 0                     | - 1                   | 0     | - 2            | - 17           |
| $x_1$                 | 0 | 1                     | $-\frac{1}{3}$        | 0                     | $\frac{1}{3}$         | 0     | $-\frac{2}{3}$ | $\frac{1}{3}$  |
| $x_5$                 | 0 | 0                     | 2                     | 0                     | 0                     | 1     | 1              | 6              |
| <i>x</i> <sub>3</sub> | 0 | 0                     | <u>2</u><br><u>3</u>  | 1                     | <u>1</u><br><u>3</u>  | 0     | $\frac{1}{3}$  | <u>13</u><br>3 |

• This is the optimal tableau since  $z_j - c_j \le 0$  for all nonbasic variables. The optimal solution is given by

$$x_1 = \frac{1}{3}, x_2 = 0, x_3 = \frac{13}{3}$$
  
 $z = -17$ 

• Note that the current optimal basis consists of the columns **a1**, **a5**, and **a3** namely

$$\mathbf{B} = \begin{bmatrix} \mathbf{a}_1, \, \mathbf{a}_5, \, \mathbf{a}_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix}$$
$$\mathbf{B}^{-1} = \begin{bmatrix} \frac{1}{3} & 0 & \frac{-2}{3} \\ 0 & 1 & 1 \\ \frac{1}{3} & 0 & \frac{1}{3} \end{bmatrix}$$

## References

### References

 M.S. Bazaraa, J.J. Jarvis, H.D. Sherali, Linear Programming and Network Flows, Wiley, 1990. (Chapter 3)

## The End