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The Initial Basic Feasible Solution

� In order to initialize the simplex method, a basis B

with b̄ = B-1b ≥ 0 must be available. 

� We shall show that the simplex method can always be 

initiated with a very simple basis, namely the identity. 
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Easy Case

� Suppose that the constraints are of the form: 

Ax ≤ b, x ≥ 0

– where A is an m x n matrix and b is an m nonnegative 

vector. 

� By adding the slack vector xs, the constraints are put in 

the following standard form: 
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the following standard form: 

Ax + xs = b, x ≥ 0, xs ≥ 0

� The new m x (m + n) constraint matrix (A, I) has rank 

m, and a basic feasible solution of this system is at 

hand, by letting xs = b be the basic vector, and x = 0 be 

the nonbasic vector. 



Some Bad Cases 

� First case: 

– The constraints are of the form Ax ≤ b, x ≥ 0 but the vector 

b is not nonnegative. 

– After introducing the slack vector xs, xs = b violates the 

nonnegativity requirement. 

� Second case: 
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� Second case: 

– the constraints are of the form Ax ≥ b, x ≥ 0, where b ≥ 0. 

– After subtracting the slack vector xs, we get 

Ax - xs = b, x ≥ 0, xs ≥ 0

– There is no obvious way of picking a basis B from the 

matrix (A, -I) with b̄ = B-1b ≥ 0.  



Artificial Variables

� We can use artificial variables to get a starting basic 

feasible solution. 

� We change the restrictions by adding an artificial 

vector xa leading to the system:

Ax + xa = b, x ≥ 0, xa ≥ 0. 
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� We forced an identity matrix corresponding to the 

artificial vector. 

� This gives an immediate basic feasible solution of the 

new system, namely xa = b and x = 0, and the simplex 

method can be applied.



Artificial Variables

� We have changed the problem. 

� In order to get back to our original problem, we must 

force these artificial variables to zero, because Ax = b

if and only if Ax + xa = b with xa = 0. 

� Artificial variables are only a tool to get the simplex 

method started. 
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method started. 



Slack Variables vs. Artificial Variables

� Slack variable

– are introduced to put the problem in equality form

– the slack variable can be positive, which means that the 

inequality holds as a strict inequality. 

� Artificial variables

– are introduced to facilitate the initiation of the simplex 
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– are introduced to facilitate the initiation of the simplex 

method. 

– These variables must eventually drop to zero in order to 

attain feasibility in the original problem. 



Methods to Eliminate the Artificial Variables

� Two methods that can be used to eliminate the 

artificial variables: 

– The two-phase method 

– The big-M method
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The Two-Phase Method

� Phase I

– We reduce artificial variables to value zero

– As the artificial variables drop to zero, they leave the basis, 

and legitimate variables enter instead. 

– If after solving the problem we have a positive artificial 

variable, then the original problem has no feasible solution
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variable, then the original problem has no feasible solution

� Phase II

– minimizes the original objective function starting with the 

basic feasible solution obtained at the end of the phase I. 



The Two-Phase Method

� Phase I: 

– Solve the following linear program starting with the basic 

feasible solution x = 0 and xa = b. 
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– If at optimality xa ∫ 0, then stop; the original problem has no feasible 

solutions. 

– Otherwise let the basic and nonbasic legitimate variables be xB and xN. 

� We are assuming that all artificial variables left the basis. 

– Go to phase II. 



The Two-Phase Method

� Phase II: 

– Solve the following linear program starting with the basic 

feasible solution xB = B-1b and xN = 0. 
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– The optimal solution of the original problem is given by the 

optimal solution of this problem. 
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The Big-M Method

� The two-phase method is one way to get rid of the 

artificials. 

� However, during phase I of the two-phase method the 

original cost coefficients are essentially ignored. 

� Phase I of the two-phase method seeks any basic 

feasible solution, not necessarily a good one. 
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feasible solution, not necessarily a good one. 

� Another possibility for eliminating the artificial 

variables is the big-M method.



The Big-M Method

� The original problem P and the big-M problem P(M) 

are stated below, where the vector b ≥ 0

Starting Solution and Convergence

� The starting basic feasible solution is given by

xa = b and x = 0



The Big-M Method

� The term M lxa can be interpreted as a penalty to be 

paid by any solution with xa ≠ 0. 

� The simplex method will try to get the artificial 

variables out of the basis, and then continue to find the 

optimal solution of the original problem. 
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The Big-M Method

� Analysis of the Big-M Method 

– Case A: P(M) has an finite optimal solution

� Subcase A1: (x*, 0) is an optimal solution of P(M) and xa = 0

� Subcase A2: (x*, x*a) is an optimal solution of P(M) and x*a ≠ 0

– Case B: P(M) has an unbounded optimal solution value, 

that is, z → -¶. 
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that is, z → -¶. 

� Subcase B1: zk – ck = Maximum(zi – ci) > 0, yk ≤ 0, and xa = 0

� Subcase B2: zk – ck = Maximum(zi – ci) > 0, yk ≤ 0, and xa ≠ 0



The Big-M Method

� Case A: P(M) has an finite optimal solution

� Subcase A1: (x*, 0) is an optimal solution of P(M) 

and xa = 0

– In this case x* is an optimal solution to problem P. 

� Subcase A2: (x*, x*a) is an optimal solution of P(M) 
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and x*a ≠ 0

– There is no feasible solution of P. 



The Big-M Method

� Case B: P(M) has an unbounded optimal solution 

value

– zk – ck = Maximum(zi – ci) > 0, yk ≤ 0, that is, z → -¶. 

� Subcase B1: zk – ck = Maximum(zi – ci) > 0, yk ≤ 0, 

and xa = 0

Starting Solution and Convergence

– The problem P has an unbounded optimal solution.

� Subcase B2: zk – ck = Maximum(zi – ci) > 0, yk ≤ 0, 

and xa ≠ 0

– There could be no feasible solution of the original problem. 



The Big-M Method

� Analysis of the big-M method

Starting Solution and Convergence



Degeneracy and Cycling

Starting Solution and Convergence



Degeneracy and Cycling

� Suppose that 

– we have a basic feasible solution with basis B. 

– we have a nonbasic variable xk with zk - ck > 0 (for a 

minimization problem). 

� Therefore xk enters the basis and xBr leaves the basis, 

where the index r is determined as follows:
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where the index r is determined as follows:

– where b̄ = B-1b and yk = B-1ak.

– Column ak enters the basis and a
Br

leaves the basis.



Degeneracy and Cycling

� The basic feasible solutions before and after pivoting 

are given by the following.
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� The difference in the objective function before and 

after pivoting is given by (b̄r /yrk)(zk - ck)



Degeneracy and Cycling

� In the presence of degeneracy b̄r = 0. 

� In this case the objective function remains constant. 

� It is evident that we have the same extreme point 

before and after pivoting, represented by different 

bases 
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� As the process is repeated, it is conceivable that 

another degenerate pivot is taken

� It is therefore possible, though highly unlikely, that we 

may stay at a nonoptimal extreme point, and pivot 

through a sequence of bases B1, B2, . . . , Bt, where Bt

= B1. 



Degeneracy and Cycling

� Cycling problem

– If the same sequence of pivots is used over and over again, 

we shall cycle forever among the bases B1, B2, . . . , Bt = 

B1, without reaching the optimal solution. 
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Degeneracy and Cycling

� Two rules that prevent cycling:

– Lexicographic rule for selecting existing variables

– Bland’s rule for selecting entering and leaving variables
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Lexicographic rule

� Suppose that 

– we have a basic feasible solution with basis B. 

– we have a nonbasic variable xk with 0 < zk - ck = Maximum 

zi – ci (for a minimization problem). 

� The index r of the variable xBr leaving the basis is 

determined as follows. 
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determined as follows. 

� If I0 is a singleton, namely I0 = {r}, then xBr leaves the 

basis. 



Lexicographic rule

� Otherwise form I1 as follows:

� If I1 is singleton, namely I1 = {r}, then xBr leaves the 
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� If I1 is singleton, namely I1 = {r}, then xBr leaves the 

basis. Otherwise form I2. 

� In general Ij is formed from Ij-1 as follows: 



Bland’s rule

� This rule has been suggested by Robert Bland. 

� In this rule, the variables are first ordered in some sequence. 

say, xl, x2, ..., xn. 

� Then of all nonbasic variables having = zj – cj > 0, the one that 

has the smallest index is selected to enter the basis.

� Similarly, of all the candidates to leave the basis (i.e. which tie 
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� Similarly, of all the candidates to leave the basis (i.e. which tie 

in the usual minimum ratio test), the one that has the smallest 

index is chosen as the exiting variable. 
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