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Network Design Problem
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Integer Programming
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Integer Programming

• Mixed Integer Program (MIP)

• Integer Program (IP)

• 0-1 or Binary Integer Program (0-1 IP or BIP)

• Mixed 0-1 or Mixed Binary Integer Program 

(Mixed 0-1 IP or MBIP)
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Integer Programming

• Linear Program: 

   Maximize cx 

      Ax ≤  b 

       x ≥  0

Where 

– A is an m by n matrix  

– c an n-dimensional row vector  

– b an m-dimensional column vector  

– x an n-dimensional column vector of 

variables 
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Integer Programming

• Mixed Integer Program (MIP): 

Maximize    cx  +  hy

      Ax  +  Gy ≤  b 

        x   ≥  0, y ≥  0  and integer

Where 

– G is m by p  matrix  

– h is a p-dimensional row vector  

– y is a p-dimensional column vector of integer

variables  
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Integer Programming

• 0-1 or Binary Integer Program (0-1 IP or BIP):

Maximize    cx

       Ax  ≤  b 

         x  ∈∈∈∈ {0, 1} 

• Mixed 0-1 or Mixed Binary Integer Program 

(Mixed 0-1 or MBIP): 

  Maximize    cx  +  hy

       Ax  +  Gy ≤  b 

         x   ≥  0, y ∈∈∈∈ {0, 1}



7

Multicommodity Flow Problem
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Multicommodity Flow Problem

• Suppose we want to send certain distinct 

commodities from their sources to their respective 

destinations along the arcs of an underlying 

network. 

• This scenario results in what is known as the 

multicommodity flow problem.

• Depending on the application, the flows may be 

interpreted as goods or vehicles on a distribution/ 

transportation network or messages on a 

communications network.
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Multicommodity Flow Problem

• Classes of Multicommodity Flow Problems:

– Uncapacitated Multicommodity Flow Problem

– Capacitated Multicommodity Flow Problem
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Multicommodity Flow Problem

• Let G = (N, A) be a directed network defined by a set 

N of n nodes, and a set A of m directed arcs 

• Let k denote the set of commodities and for each k ∈∈∈∈

K 

• Let 
k

ijx  denote the flow of commodity k on arc  

(i, j) 

• Let 
k

ijc  denote cost per unit flow of commodity k on 

arc (i, j) 

• Let iju  denotes the capacity of each arc that restricts 

the total flow of all commodities on that arc 
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Multicommodity Flow Problem

• Capacitated Multicommodity Flow Problem 

formulation: 
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Multicommodity Flow Problem

• (A) Objective function 

• (B) Balance constraints: 
- Modeling the flow of each commodity k = 1, 2, 

…, K

- We associate with each node i ∈∈∈∈ N a number 
k

ib

representing its supply/demand.

- If k

ib  > 0, node i is a supply node;

- if 
k

ib  < 0, node i is a demand node with a demand 

of -
k

ib ; and 

- if 
k

ib  = 0, node i is a transshipment node.

• (C) Bundle constraints: 
- Tie the commodities by restricting the total flow 

of all the commodities on each arc (i, j) to at most

iju . 
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Multicommodity Flow Problem

Classes of Multicommodity problems:

• Network Analysis Problems: We may want to maximize the 

total flow of all commodities in a max flow problem or 

minimize the costs of meeting a given set of requirements in 

min cost problem.

• Network Synthesis or Network Design Problems: We seek 

an optimal network configuration satisfying a given net of 

requirements. We may, for example, meet these 

requirements by installing capacity on the network, and 

seek to minimize total installation cost. 
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Multicommodity Network Design 

Problem
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Multicommodity Network Design Problem

• Network design models are extensively used to represent a 

wide range of planning and operation issues in 

transportation, telecommunications, logistics, and 

production-distribution systems. 

• Indeed, network design issues provide the full hierarchy of 

strategic, tactical, and operational decision-making 

situations that arise in transportation.

• Classes of Multicommodity Network Design Problems:

– Uncapacitated Multicommodity Network Design Problem

– Capacitated Multicommodity Network Design Problem
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Multicommodity Network Design Problem

• Multicommodity Capacitated Network Design 

(MCND) formulation: 
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Multicommodity Network Design Problem

• ijy  are integer variables modeling discrete 

choice design decisions, ijy = 1 only if link (i, j) is

open, the link is closed when ijy = 0 

•
k

ijx  are continuous flow decision variables 

indicating the amount of flow of commodity k

using link (i, j) 

• ijf the fixed cost of opening link (i, j) 

•
k

ijc  the transportation cost per unit of flow of 

product k on link (i, j) 

• iju  the capacity of link (i, j) 

•
k

ib the demand of product k at node i
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Network Design Problem


