
برنامه ريزي حمل و نقل ريلي

مدل برنامه ريزي خدمه : 20فصل  
)مدل (

بسم االله الرحمن الرحيم

١

مدل برنامه ريزي خدمه : 20فصل  
)Capraraمدل (

دكتر مسعود يقيني: مدرس

  1388پائيز 



Crew Scheduling Model

٢

(Caprara Model)



Definitions

٣



Definitions

• Crew management 

– is concerned with building the work schedules of crews 

needed to cover a planned timetable. 

– This is part of tactical planning which concern the 

medium-term use of the available resources.
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Definitions

• Crews

– Personnel grouped together as crews

• Train services

– We are given a planned timetable for the train services to 

be performed every day of a certain time period.

�

– Train services include both the actual journeys with 

passengers or freight, and the transfers of empty trains or 

equipment between different stations.



Definitions

• Trips

– Each train service has first been split into a sequence of 

trips

– Trips include segments of train journeys which must be 

serviced by the same crew without rest. 

– Each trip is characterized by:

�

– Each trip is characterized by:

• a departure time, 

• a departure station, 

• an arrival time, 

• an arrival station, 

• and possibly by additional attributes. 

– Each daily occurrence of a trip has to be performed by one 

crew. 



Fig. 1. The trips to be covered everyday
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Definitions: Duty & Depot

• Duty

– A sequence of trips to be covered by a single crew within a 

given time period that covers at most L consecutive days is 

called duty or pairing.

– In railroad application, L is typically at most 2.

٨

• Depot

– A depot represents the starting and ending point of crew’s 

work segments



Fig. 2. Duties covering all the trips
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Each duty overlaps at most L = 2 consecutive days



Definitions: Roster

• Roster 

– A roster is a sequence of trips whose operational cost and 

feasibility depend on several rules laid down by union 

contracts and company regulations. 

– The roster consists of the cyclic trip sequence

– Each crew performs a roster 

١٠

– Each crew performs a roster 



Fig. 3. A Roster Covering all Trips
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• The roster spans 12 days

• Each 6th day is left idle for crew rest

• According to the roster, 12 crews are needed to perform each 

daily occurrence of the given trips



Definitions: The Roster

• The first crew covers: 

– on calendar day d, say, trips T3 and T9, 

– on calendar day d + 1 no trip, 

– on calendar day d + 2 trips T2 and T5 

– ..... 
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– on calendar day d + 11 no trip, 

– on calendar day d + 12 again trips T3 and T9, and so on. 



Definitions: The Roster

• On calendar day d + 1, 

– trips T3 and T9 are instead covered by the second crew, 

– which performs no trips on day d + 2, 

– trips T2 and T5 on day d + 3, and so on. 

• Trips T3 and T9 

١٣

• Trips T3 and T9 

– on calendar day d + 2 are covered by crew number 3, 

– on calendar clay d + 3 by crew number 4 ..... 

– on calendar day d+ 11 by crew number 12, and 

– on calendar day d + 12 by crew number 1 again.



Definitions: Pairing Generation 

• Pairing Generation 

– is a preprocessing phase of crew scheduling which all 

feasible duties are computed and stored.
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Railway Crew Management
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Railway Crew Management

• Railway crew management represents a very complex 

and challenging problem due to both the size of the 

instances to be solved and the type and number of 

operational constraints. 

• Typical figures at the Italian railway company, are 
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about 8,000 trains per day and a workforce of 25,000 

drivers spread among several depots. 

• The largest planning problems concern the inter-city 

and long-range passenger trains, and involve about 

2,000 trains split into 5,000 trips per day.



Railway Crew Management

• The crew management problem consists of:

– Finding a set of rosters covering every trip of the given time 
period, so as to satisfy all the operational constraints, with 

minimum cost.

– A main objective of crew management is the minimization 
of the global number of crews needed to perform all the 
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of the global number of crews needed to perform all the 

daily occurrences of the trips in the given period

• In practice, the overall crew management problem is 

approached in two phases:

– Crew scheduling

– Crew rostering



Crew scheduling

• The short-term schedule of the crews is considered, 
and a set of duties covering all the trips is constructed.

• In the example, the trips are covered by means of the 

5 duties reported in Fig. 2.

• The objective used in the crew scheduling phase 
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• The objective used in the crew scheduling phase 

mainly calls for the minimization of the number of 

working days corresponding to the duties.



Crew rostering

• The duties selected in phase 1 are sequenced to obtain 

the final rosters. 

• In this step, trips are no longer taken into account 

explicitly, but determine the attributes of the duties 

which are relevant for the roster feasibility and cost. 

١٩

• In Fig. 2. the 5 duties are sequenced to obtain the 12-

day roster in Fig. 3.



Reasons of Decomposition

• Constraints for short term work segments are different 

from constraints for longer periods 

– For example, in the Italian railway company the minimum 
time interval between two consecutive trips in a duty is a 

few minutes for changing trains, whereas the time interval 

between two consecutive duties is 18-22 hours for home 
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between two consecutive duties is 18-22 hours for home 

rest.

• Each crew must return within a given time to a home 

depot, resulting in a natural constraint for the crew 

scheduling phase.



Reasons of Decomposition

• The problem is much easier to solve, since typically 

both parts can be modeled independently, resulting in 

smaller problem descriptions for both phases.

• The decomposition approach fits nicely into current 

planners methods, especially the duty optimization 
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can be done centrally, whereas each depot can do the 

rostering phase separately for its associated duties.



Crew Scheduling Model
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Crew Scheduling Problem

• Crew scheduling problem requires finding min-cost 

sequences through a given set of items.  

• Items correspond to trips and sequences correspond to 

duties. 

• A formulation of the problem in term of graphs associates a 

node with each item, and a directed arc with each item 

٢٣

node with each item, and a directed arc with each item 

transition. 

• A directed graph, G = (V, A) having one node Vj ∈  for 

each trip, and an arc Aji ∈),(  if trip j can appear right after 

item i in a feasible sequence 

• With this representation, the problems can be formulated as 

finding a min-cost collection of circuits (or paths) of G 

covering each node once 



Crew Scheduling in Urban Transit 

• Consider crew scheduling in the context of urban mass 

transit companies 

• Where duty duration (spread time) is less than 24 hours.  

• Here, a minimum duty start time b (e.g., 2 a.m.) is given. 

• Accordingly, all departure/arrival times between 0 

(midnight) and b are increased by 24 hours, and an arc 
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(midnight) and b are increased by 24 hours, and an arc 

Aji ∈),(  exists only if the arrival time of trip i is not greater 

than the departure time of trip j. 



Crew Scheduling in Railway Application

• Where duty duration (spread time) in railway applications 

is greater than 24 hours 

• This allows an arc to connect a trip i to a trip j even if the 

arrival time of i is greater than the departure time of j. 

• Meaning that a crew performs trips i and j on different 

days.  
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days.  

• In this case, crew scheduling calls for a min-cost 

collection of paths covering all the nodes once, each path 

satisfying a set of constraints related to the feasibility of 

the corresponding duty (maximum driving time, meal 

breaks, etc.). 



Crew Scheduling in Railway Application

• As already mentioned, a basic constraint for crew 

scheduling is that every duty must start and end at the 

crew home location (depot). 

 

• It is then natural to introduce in G a dummy node d for 

each depot, along with the associated arcs (d, j) 
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each depot, along with the associated arcs (d, j) 

(respectively, (j, d)) for each node j associated with a trip 

which can be the first (respectively, the last) trip in a duty 

assigned to depot d. 



Crew Scheduling in Railway Application

• This allows one to convert each path representing a duty 

into a circuit by connecting the terminal nodes of the path 

to the depot node representing the home location of the 

crew. 
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• There are two basic ways of modeling as an integer linear 

program the problem of covering the nodes of a directed 

graph through a suitable set of circuits. 



First Crew Scheduling Model
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First Crew Scheduling Model

G = (V, A): A directed graph, having one node Vj ∈  for each trip, and 

an arc Aji ∈),(   if trip j can appear right after item i in a 

feasible sequence 

d: a dummy node for each depot, along with the associated arcs 

(d , j) (respectively, (j, d)) for each node j associated with a 

trip which can be the first (respectively, the last) trip in a 

duty assigned to depot Dd ∈ . 
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duty assigned to depot Dd ∈ . 

)(v+δ : represent the set of the arcs of G leaving node Vv ∈ . 

)(v−δ : represent the set of the arcs of G entering node Vv ∈ . 

 



First Crew Scheduling Model

D: denote the set of depot nodes VD ⊂ . 

P: is the family of all arc subsets P. 

P : arc subset which can not be part of any feasible solution 
P∈P . 

c : the cost of each arc Aji ∈),( . 
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ijc : the cost of each arc Aji ∈),( . 

ijx : a binary variable with each arc Aji ∈),( , where ijx =1 if 

arc (i, j) is used in the optimal solution and ijx =0 

otherwise. 

 



First Crew Scheduling Model
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First Crew Scheduling Model

• Constraints (2) impose that the same number of arcs 

enter and leave each node, and that each node not 

associated with a depot is covered exactly once. 

• Constraints (3) impose that the same number of arcs 
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enter and leave each depot.  

• Constraints (4) forbid the choice of all the arcs in any 

infeasible arc subset P. 



First Crew Scheduling Model

• Notice that P contains all the arc sequences which 

cannot be covered by a single crew because of 

operational constraints. 

• |P| may grow exponentially with |V| 

٣٣

• In addition, P  may contain subsets of arcs which 

cannot all be selected because of constraints related 

to the infeasibility of a group of circuits; these are 

typically called crew base constraints. 

 



Crew Base Constraints

• Crew base constraints have to be fulfilled:

– lower and upper bounds on the number of selected duties 

associated with each depot

– maximum percentage of selected overnight duties for each 

depot

– maximum percentage of selected duties with external rest 
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– maximum percentage of selected duties with external rest 

for each depot

– similar constraints for all duties together

• These constraints can not be part of the sequencing 

rules or the overall duty constraints



First Crew Scheduling Model

• This model can only be applied when the cost of the 

solution can be expressed as the sum of the costs 

associated with the arcs. 

• Hence it cannot be used when the cost of a circuit 

depends on the overall node sequence, or on the 
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depends on the overall node sequence, or on the 

"type" of the crew, e.g., on the home location. 



A Variant of the First Model 

k

ijx : a binary variable with each arc Aji ∈),(  when performed by 

a crew of type k, where 
k

ijx =1 means that a crew of type k 

covers nodes i and j in sequence, and 
k

ijx =0 otherwise. 

k

ijc : the cost of each arc Aji ∈),( , when performed by a crew of 
kc
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type k, where 
k

ijc  = +∞ if (i, j) cannot be used by a crew of 

type k. 

K: the set of crew types. 

P
 k
: is the family of all arc subsets P which cannot be part of any 

feasible solution for the crews of type k. 

 



A Variant of the First Model
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A Variant of the First Model

• Model (6) - (10) allows arc costs depending on the 

crew type.  

• Moreover, infeasibility constraints of type (8) can 

exploit the fact that the type of crew is given, which 

may lead to tighter linear programming relaxations.  
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may lead to tighter linear programming relaxations.  

• An obvious drawback is the increased size of the 

model, in terms of both the number of variables and 

constraints. 

 



Second Crew Scheduling Model
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Second Crew Scheduling Model

C : denote the collection of all the simple circuits of G 

corresponding to a feasible duty for a crew, C = {C1, ...., Cn}, 

and with n = |C|. 

Cj : is a circuits of G corresponding to a feasible duty for a crew 

S : denotes the family of all sets S. 

�٠

S: S ⊆ {1, ...., n} with the property that no feasible solution 

contains all circuits Cj for Sj ∈ . 

cj :  the cost of Cj 

Ij : the node set which is covered by duty of Cj  

yj : The binary variable, takes value 1 if Cj is part of the optimal 

solution, and 0 otherwise. 

 



Fig. 4. Graph representation of the crew 

scheduling phase
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Second Crew Scheduling Model

set partitioning problem with side constraints 
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Second Crew Scheduling Model

• Constraints (12) impose that each node not associated 

with a depot is covered by exactly one circuit,  

• Constraints (13) model the crew base constraints. 
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Second Crew Scheduling Model

• A main advantage of the set partitioning model is that 

it allows for circuit costs depending on the whole 

sequence of arcs, and possibly on the crew type. 

• Moreover, the feasibility constraints (13) need not 

take into account restrictions concerning the 

��

take into account restrictions concerning the 

feasibility of a single circuit. 

• The second model has a possibly exponential number 

of binary variables, each associated with a feasible 

circuit of G. 

 



Crew Scheduling Model
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at the Italian Railways 



Crew Scheduling at the Italian Railways

• In Italian railway applications a typical crew duty 

lasts no more than 24 hours and covers only a few 

trips. 

• Heavy operational constraints affect duty feasibility.  

• This makes it practical to effect the explicit 
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• This makes it practical to effect the explicit 

generation of all feasible duties, which are computed 

and stored in pairing generation. 

 



Crew Scheduling at the Italian Railways

• In addition, operational rules allow a crew to be 

transported with no extra cost as a passenger on a 

trip, hence the overall solution can cover a trip more 

than once.  

• In this situation, the set partitioning formulation 
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• In this situation, the set partitioning formulation 

(11)-(14) can be replaced by its set covering problem 

relaxation obtained by replacing = with ≥ in (12). 

 



Crew Scheduling at the Italian Railways

• Even without side constraints (13), set covering 

problems arising in railway applications appear rather 

difficult mainly because of their size. 

• Indeed, the largest instances at the Italian railways 

involve up to 5,000 trips and 1,000,000 duties, i.e., 
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involve up to 5,000 trips and 1,000,000 duties, i.e., 

they are 1-2 orders of size larger than those arising in 

typical airline applications. 

 



Pure Set Covering Problem (SCP)

Ij : the node set which is covered by duty of j th 

N: set of duties, N={1,…,n} 

cj :  the cost of duty of j th 

M trip set, M={1,…,m} 

i : index for trips, Mi ∈  
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i : index for trips, Mi ∈  

j : index for duties, Nj ∈  

Ji the collection of duties which, trip of i th is included in them,  

}|{ ji IiNjJ ∈∈∈  

yj yj = 1 if duty j is selected in the optimal solution, yj = 0 

otherwise. 

 



Pure Set Covering Problem (SCP)
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Crew Rostering Problem
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Crew Rostering Problem

• A roster contains a subset of duties and spans a cyclic 

sequence of groups of 6 consecutive days, 

conventionally called weeks. 

• The number of days in a roster is an integer multiple 

of 6. 

�٢

• The length of a roster is typically 30 days (5 weeks) 

and does not exceed 60 days (10 weeks), although 

these requirements are not explicitly imposed as 

constraints. 



Crew Rostering Problem

• The crew rostering problem consists of finding a 

feasible set of rosters covering all the duties and 

spanning a minimum number of weeks.

• The global number of crews required every day to 

cover all the duties is equal to 6 times the total number 
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of weeks in the solution. 

• Thus, the minimization of the number of weeks 

implies the minimization of the global number of 

crews required.



Crew Rostering Problem

• Each duty can have additional characteristics:

– duty with external rest, if it includes a long rest out of the 

depot for the crew;

– long duty, if it does not include an external rest and its 

working time is longer than 8 hours and 5 minutes;

– overnight duty, if it requires some working between 
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– overnight duty, if it requires some working between 

midnight and 5 am;

– heavy overnight duty, if it is an overnight duty without 

external rest, and requires more than 1 hour and 30 minutes' 

work between midnight and 5 am.



Crew Rostering Model

• There are two types of rests, conventionally called 

simple and double rests. 

• Simple rests must be at least 48 hours long, 

• Double rests must span at least two complete days, 

i.e., either the fifth and sixth day of a week or the 
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i.e., either the fifth and sixth day of a week or the 

sixth day of a week and the first day of the following 

one.



Crew Rostering Model

G = (V, A): A directed graph, where each node in V={1, ..., n} is 

associated with a duty and the arcs represent the consecutive 

sequencing of duty pairs within a roster, A={A1, A2, A3} 

A1 : For each pair of nodes Vji ∈, , we have an arc 1),( Aji ∈ , 

when the nodes are sequenced directly in the same week. 

These arcs are called directed arcs. 

��

A2 : For each pair of nodes Vji ∈, , we have an arc 2),( Aji ∈ , 

when a simple rest is imposed between them. These arcs are 

called simple-rest arcs. 

A3 : For each pair of nodes Vji ∈, , we have an arc 3),( Aji ∈ , 

when a double rest is imposed between them. These arcs are 

called double-rest arcs. 

 



Graph Representation
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Crew Rostering Model

1

ijc  : Is the minimum time (in minutes) between the start of duty i 

and the start of duty j when they are sequenced directly in the 

same week, 1),( Aji ∈ . 

2

ijc  : Is the minimum time (in minutes) between the start of duty i 

and the start of duty j when a simple rest is imposed between 

them, ),( Aji ∈  
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them, 2),( Aji ∈  

3

ijc  : Is the minimum time (in minutes) between the start of duty i 

and the start of duty j when a double rest is imposed between 

them, 3),( Aji ∈  

 



Crew Rostering Model

1

ijx  : A binary variable equal to 1 if the directed arc 1),( Aji ∈ is in 

the optimal solution, and 0 otherwise. 

2

ijx  : A binary variable equal to 1 if the simple-rest arc 

2),( Aji ∈ is in the optimal solution, and 0 otherwise. 

3

ijx  : A binary variable equal to 1 if the double-rest arc 

),( Aji ∈ is in the optimal solution, and 0 otherwise. 
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ij

3),( Aji ∈ is in the optimal solution, and 0 otherwise. 

r An integer variable represents the minimum number of 

simple- or double-rest arcs in the solution, 

z An integer variable represents the minimum number of 

double-rest arcs in the solution. 

α The number of minutes in a week, 6 * 1440. 

 



Crew Rostering Model

• Objective Function: 
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Crew Rostering Model
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• Constraints (20) & (21): impose that each node has 

exactly one entering and one leaving arc 

 

 



Crew Rostering Model
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• Constraints (22) & (23): ensure that the total number 

of simple- or double-rest arcs is at least the total cost 

of the solution, expressed in weeks. 

 

 



Crew Rostering Model
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• Constraints (24) and (25) ensure that the total number 

of double-rest arcs is at least 0.4 times the total 

number of simple- and double-rest arcs. 
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