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Introduction

• Line

– In a railway system with periodic timetable a line

connecting two stations runs several times in a fixed time 

interval e.g. one hour, across the network.

– This number is called the frequency of the line.

• Line Optimization Problem 
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• Line Optimization Problem 

– consists of choosing some lines with their frequencies to 

serve passenger demand and to optimize a given objective 

• Objective functions 

– to minimize operational costs for a fixed service

– to maximize service quality for fixed operational costs



Introduction

• Service Quality 

– One way to improve the service is to minimize the total 

travel time of all passengers

– At this stage of planning there is no timetable hence you 

cannot determine the exact waiting period while changing 

lines 
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lines 

– Changing of lines itself is a major inconvenience, hence one 

possible way to optimize service is to minimize the total 

number of changes or even simpler to maximize the total 

number of travelers on direct connections or simply direct 

travelers.
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Modeling Railway Networks and Lines

• G = (V, E):

– An undirected graph where 

– V denotes the set of vertices which describe the stations 

– E is the set of edges which  define direct connections or 

links between two stations

• T : the travel time on a single link 
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• T : the travel time on a single link 

• D : the travel distance on a single link

– We assume that passengers from a to b come back to a



Modeling Railway Networks and Lines

• Possible lines 

– L0 : denote the set of all possible lines

• Classification Yards

– CY Œ V classification yards, that describe the stations in 

which a line may start / end, and they have a special 

equipment  (e.g. sidings to compose trains)
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equipment  (e.g. sidings to compose trains)

– Only paths in G with start and endpoint in CY are possible 

lines

• Frequency of lines



Modeling Railway Networks and Lines

• tr(a, b) / tr(t)

– a, b œ V, a # b

– Volume of traffic between the stations 

•  T := {{a, b} | a, b œ V, a # b, tr({a, b}) # 0

– denote the set of origin-destination pairs with nonzero 
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– denote the set of origin-destination pairs with nonzero 

volume of traffic



Modeling Railway Networks and Lines

• Assumption 

– Travelers between a and b (a, b) œ V use a shortest path 

between a and b in G with respect to some edge evaluation 

i.e. travel time T or travel distance D

• Pt : denote the shortest path in G with respect to some 

edge evaluation between a and b ( t = {a, b} œ T)
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edge evaluation between a and b ( t = {a, b} œ T)

• tl(e) : the traffic load is given by:



Modeling Railway Networks and Lines

• lfr(e) : line frequency requirement, the minimum 

number of trains / lines, which have to run along link 

e to serve the demand for transportation

• A reasonable calculation of the line frequency 
requirement would be:
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• C : train capacity, a vague estimation of the real 

situation



Modeling Railway Networks and Lines

• Decision Variables:

• dt,l : denote the number of direct travelers between t œ
T (t = {a, b} using line l.

• fl : denotes the frequency of line l œ L0

– the frequencies of the possible lines are in a fixed time 
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– the frequencies of the possible lines are in a fixed time 

interval (e.g. in one hour)



The Mixed Integer Linear Programming 
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The Mixed Integer Linear Programming 

Formulation



The MIP Formulation

• The MIP formulation of the line optimization problem
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The MIP Formulation

• We will allow fractional travelers dt, l we relax dt, l œ

Z+ to dt, l ≥ 0 , 

• The number of direct travelers is huge, therefore it  

seems not to be very important to find the exact 

integral optimum 
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• It may be sufficient to base our evaluation on its linear 

programming relaxation



The MIP Formulation

• Inequality, 

– restricts the number of direct travelers between t œ T by the 

total number of travelers 
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total number of travelers 

• By inequality 

– no line can be overloaded



The MIP Formulation

• Equation,

• ensures that the edges are covered with a sufficient 

number of lines / frequencies.
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number of lines / frequencies.
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An Example

• Considering the following railway network:
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An Example

• Demands (tr):

tr V1 V2 Volume

1 a B 50

2 a c 50
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3 a d 50

4 b c 50

5 b d 50

6 c d 50



An Example

• Lines / services (f), and C = 100 persons

l V1 V2

1 a B

2 a C

3 a d
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3 a d

4 b c

5 b d

6 c d



An Example

• Decision variables dt,l that denote the number of direct travelers 
between t œ T (t = {a, b} using line l.

t l

1 (a, b) 1 (a, b)

2 (a, c) 2 (a, c)

3 (a, d) 1 (a, b)
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3 (a, d) 1 (a, b)

3 (a, d) 2 (a, c)

3 (a, d) 3 (a, d)

4 (b, c) 4 (b, c)

5 (b, d) 1 (a, b)

5 (b, d) 4 (b, c)

5 (b, d) 5 (b, d)

6 (c, d) 2 (a, c)

6 (c, d) 4 (b, c)

6 (c, d) 6 (c, d)



An Example

1,1 2,2 3,1 3,2 3,3 4,4 5,1 5,4max  d d d d d d d d+ + + + + + + +

+ + +
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5,5 6,2 6,4 6,6d d d d+ + +



An Example

• Inequality restricts the number of direct travelers between t œ T

by the total number of travelers

1,1 50d ≤
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2,2

3,1 3,2 3,3

4,4

5,1 5,4 5,5

6,2 6,4 6,6

50

50

50

50

50

d

d d d

d

d d d

d d d

≤

+ + ≤

≤

+ + ≤

+ + ≤



An Example

• By inequality no line can be overloaded

e L t

(a-d) 1 (a, b) 1 (a, b)

(a-d) 1 (a, b) 3 (a, d)

(a-d) 2 (a, c) 2 (a, c)

l V1 V2 e1 e2

1 a b (a-d) (d-b)

2 a c (a-d) (d-c)
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(a-d) 2 (a, c) 2 (a, c)

(a-d) 2 (a, c) 3 (a, d)

(a-d) 3 (a, d) 3 (a, d)

(b-d) 1 (a, b) 1 (a, b)

(b-d) 1 (a, b) 5 (b, d)

(b-d) 4 (b, c) 4 (b, c) 

(b-d) 4 (b, c) 5 (b, d)

(b-d) 5 (b, d) 5 (b, d)

(d-c) 2 (a, c) 2 (a, c)

(d-c) 2 (a, c) 6 (c, d)

(d-c) 4 (b, c) 4 (b, c) 

(d-c) 4 (b, c) 6 (c, d)

(d-c) 6 (c, d) 6 (c, d)

2 a c (a-d) (d-c)

3 a d (a-d)

4 b c (b-d) (d-c)

5 b d (b-d)

6 c d (d-c)



An Example

1,1 3,1 1

2,2 3,2 2

3,3 3

1,1 5,1 1

100

100

100

100

d d f

d d f

d f

d d f

+ ≤ ×

+ ≤ ×

≤ ×

+ ≤ ×
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1,1 5,1 1

4,4 5,4 4

5,5 5

2,2 6,2 2

4,4 6,4 4

6,6 6

100

100

100

100

100

d d f

d f

d d f

d d f

d f

+ ≤ ×

≤ ×

+ ≤ ×

+ ≤ ×

≤ ×



An Example

• This equation ensures that the edges are covered with 

a sufficient number of lines / frequencies.

• lfr(e) : line frequency requirement, the minimum 
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• lfr(e) : line frequency requirement, the minimum 

number of trains / lines, which have to run along link 

e to serve the demand for transportation



An Example

Arcs tr(a-b) tr(a-c) tr(a-d) tr(b-c) tr(b-d) tr(c-d) total lfr(e)

(a-d) 50 50 50 0 0 0 150 2

(b-d) 50 0 0 50 50 0 150 2

(d-c) 0 50 0 50 0 50 150 2
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(d-c) 0 50 0 50 0 50 150 2

1 2 3

1 4 5

2 4 6

2

2

2

f f f

f f f

f f f

+ + =

+ + =

+ + =



An Example

• Solution:

1,1

2,2

3,2

50

50

50

d

d

d

=

=

=

1

2

4

1

1

1

f

f

f

=

=

=
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3,2

4,4

5,4

6,4

50

50

50

50

d

d

d

d

=

=

=

=

4 1f =
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