PROBLEM SET\# 4 -COLUMNS

10.2-11. A heavy, relatively rigid bar $A B$ is pin-supported at end A and supported at C and D by two identical pin-ended slender columns as shown in the figure. Each column has flexural rigidity $E I$. At what load Q does the system collapse?

Prob. 10.2-11

Prob. 10.2-12
10.2-12. A structure $A B C D$ is composed of three slender bars (see figure) having the same flexural rigidity $E I$. Joints B and D are pin connections and supports A and C are fixed. The angle $\beta=30^{\circ}$. Assuming that collapse occurs by buckling of the members, determine the critical value of the vertical load P acting at joint D.
10.2-13. A pin-connected truss $A B C$ is composed of two slender bars (see figure) having identical cross sections and the same material. Assuming that collapse occurs by buckling of the members, determine the angle θ so that the load P will be a maximum. (Assume $0<\theta<\pi / 2$.)

Prob. 10.2-13

PROBLEM 10.28

PROBLEM 10.32
10.20 Members $A B$ and $C D$ are 30 -mm-diameter steel rods, and members $B C$ and $A D$ are 22 -mm-diameter steel rods. When the turnbuckle is tightened, the diagonal member $A C$ is put in tension. Knowing that a factor of safety with respect to buckling of 2.75 is required, determine the largest allowable tension in $A C$. Use $E=$ 200 GPa and consider only buckling in the plane of the structure.

ANS: 2.77 KN
10.28 Column $A B$ carries a centric load \mathbf{P} of magnitude 72 kN . Cables $B C$ and $B D$ are taut and prevent motion of point B in the $x z$ plane. Using Euler's formula and a factor of safety of 2.3, and neglecting the tension in the cables, determine the maximum allowable length L. Use $E=200 \mathrm{GPa}$.

ANS: 12.08 m
10.32 An axial load \mathbf{P} is applied to the $32-\mathrm{mm}$-diameter steel rod $A B$ as shown. For $P=37 \mathrm{kN}$ and $e=1.2 \mathrm{~mm}$, determine (a) the deflection at the midpoint C of the rod, (b) the maximum stress in the rod. Use $E=200 \mathrm{GPa}$.

